Patents by Inventor Netanel Benichou

Netanel Benichou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110112644
    Abstract: An intervertebral prosthetic implant device is described. The device includes a first plate with an axis support for supporting a rolling element substantially separate from the remainder of the first plate, designed to allow rolling of the rolling element. The device also includes a second plate that includes a groove designed to accommodate the rolling element, facilitating rotating and rolling motion of the second plate with respect to the first plate by rolling over the rolling element.
    Type: Application
    Filed: November 12, 2009
    Publication date: May 12, 2011
    Inventors: Boris ZILBERSTEIN, Netanel Benichou, Oded Elish
  • Patent number: 7895876
    Abstract: An improved crimping mechanism and method well-suited for use with stented prosthetic heart valves. The crimping mechanism includes a plurality of jaws configured for linear non-rotational movement toward a central axis. A rotational plate is formed with a plurality of spiral grooves or tracks for engaging the jaws. Rotational movement of the spiral tracks produces linear movement of the jaws. Nesting of the inner ends of the jaws permits each to be acted on along different radial lines while their inner faces move together evenly to reduce the crimping aperture in a smooth fashion. The crimping mechanism is particularly well-suited for use with stented prosthetic heart valves, such as a prosthetic aortic valve, though it can also be applied to other stented heart valves, venous valves, and even stent grafts which tend to be fairly large.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: March 1, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: Benjamin Spenser, Netanel Benichou
  • Patent number: 7708775
    Abstract: A two-stage or component-based valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve comprises a support structure that is deployed at a treatment site. The prosthetic valve further comprises a valve member configured to be quickly connected to the support structure. The support structure may take the form of a stent that is expanded at the site of a native valve. If desired, the native leaflets may remain and the stent may be used to hold the native valve open. In this case, the stent may be balloon expandable and configured to resist the powerful recoil force of the native leaflets. The support structure is provided with a coupling means for attachment to the valve member, thereby fixing the position of the valve member in the body. The valve member may be a non-expandable type, or may be expandable from a compressed state to an expanded state.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: May 4, 2010
    Assignee: Edwards Lifesciences Corporation
    Inventors: Stanton J. Rowe, Larry Wood, Henry Bourang, George Bakis, Benjamin Spenser, Netanel Benichou, Yaron Keidar, Assaf Bash
  • Publication number: 20100049313
    Abstract: Embodiments of the present disclosure provide a prosthetic heart valve and a heart valve delivery apparatus for delivery of the prosthetic heart valve to a native valve site via the human vasculature. The delivery apparatus is particularly suited for advancing a prosthetic valve through the aorta (i. e., in a retrograde approach) for replacing a diseased native aortic valve. In one embodiment, a self-expanding valve comprises an expandable stent that is shaped to maintain the valve in the aortic annulus against axial without anchors or retaining devices that engage the surrounding tissue. A delivery apparatus for delivering s self-expanding prosthetic valve can be configured to allow controlled and precise deployment of the valve from a valve sheath so as to minimize or prevent jumping of the valve from the valve sheath.
    Type: Application
    Filed: April 23, 2009
    Publication date: February 25, 2010
    Inventors: David Alon, Netanel Benichou, Oded Meiri
  • Publication number: 20100036484
    Abstract: An implantable prosthetic valve, according to one embodiment, comprises a frame, a leaflet structure, and a skirt member. The frame can have a plurality of axial struts interconnected by a plurality of circumferential struts. The leaflet structure comprises a plurality of leaflets (e.g., three leaflets arrange to form a tricuspid valve). The leaflet structure has a scalloped lower edge portion secured to the frame. The skirt member can be disposed between the leaflet structure and the frame.
    Type: Application
    Filed: June 8, 2009
    Publication date: February 11, 2010
    Inventors: Ilia Hariton, Netanel Benichou, Yaacov Nitzan, Bella Felsen, Diana Nguyen-Thien-Nhoh, Rajesh Khanna, Son V. Nguyen, Tamir Levi, Itai Pelled
  • Patent number: 7628805
    Abstract: The present invention provides a series of new percutaneous concepts of paravalvular repairs including identifying the leak location, several repair techniques and finally built-in means for leak prevention, built on percutaneous valves. A catheter-delivered device locates cavities occurring between a prosthetic valve and the wall of the body vessel where the valve is implanted, the cavities producing paravalvular leaks during diastole, the device comprising at least one of a plurality of flexible wires, the wire having attached to it a balloon, wherein the balloon is pulled by the leak through the cavity and wherein the wire then serves to mark the cavity location.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: December 8, 2009
    Assignee: Edwards Lifesciences PVT, Inc.
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash
  • Publication number: 20090281609
    Abstract: A two-part implantable heart valve and procedure are disclosed that allow expansion and positioning of a first part of the implantable heart valve having a temporary or transient valvular structure. A second part of the implantable heart valve is deployed within the first part and attaches thereto. The valvular structure of the second part then acts to function as the heart valve replacement. A tool or system is provided for determining an adequate percutaneous heart valve size for a given stenotic valve. A balloon can be inflated inside the stenotic valve to a desired pressure. When this pressure is reached an angiographic image is taken and the balloon diameter is measured at a waist area created by contact between the balloon and the stenotic valve. The diameter represents the minimum percutaneous heart valve diameter to be implanted.
    Type: Application
    Filed: February 25, 2009
    Publication date: November 12, 2009
    Inventors: Netanel Benichou, Son V. Nguyen, Benjamin Spenser
  • Publication number: 20090157175
    Abstract: An implantable prosthetic valve has an upper frame section and a lower frame section. The upper frame section has a plurality of struts and a first leaflet receiving surface at a lower portion of the upper frame section. The lower frame section has a second leaflet receiving surface at an upper portion of the lower frame section. An edge of a flexible leaflet is disposed between the first and second leaflet receiving surfaces to attach the leaflet to the upper and lower frame sections.
    Type: Application
    Filed: December 15, 2008
    Publication date: June 18, 2009
    Applicant: Edwards Lifesciences Corporation
    Inventor: Netanel Benichou
  • Patent number: 7530253
    Abstract: An improved crimping mechanism well-suited for use with stented prosthetic heart valves. The crimping mechanism includes a plurality of jaws configured for linear non-rotational movement toward a central axis. A rotational plate is formed with a plurality of spiral grooves or tracks for engaging the jaws. Rotational movement of the spiral tracks produces linear movement of the jaws. Nesting of the inner ends of the jaws permits each to be acted on along different radial lines while their inner faces move together evenly to reduce the crimping aperture in a smooth fashion. The crimping mechanism is particularly well-suited for use with stented prosthetic heart valves, such as a prosthetic aortic valve, though it can also be applied to other stented heart valves, venous valves, and even stent grafts which tend to be fairly large.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: May 12, 2009
    Assignee: Edwards Lifesciences Corporation
    Inventors: Benjamin Spenser, Netanel Benichou
  • Patent number: 7462191
    Abstract: A system for percutaneously introducing a prosthetic valve into a patient's vasculature comprises a balloon dilatation catheter, a prosthetic valve mounted coaxial to the dilatation balloon, and a pusher member comprising a longitudinally extending tubular member encompassing the shaft of the catheter. The distal end of the pusher member preferably corresponds to the proximal end of the stent component of the prosthetic valve. The pusher member provides enhanced longitudinal pushability for facilitating advancement of the prosthetic valve to a treatment site. The system is well-suited for advancing a prosthetic valve or other medical device through an introducer sheath having a relatively small inner diameter. The introducer sheath may be formed with a tapered proximal end portion for receiving the prosthetic valve and for reducing a diameter of the prosthetic valve during advancement therethrough.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: December 9, 2008
    Assignee: Edwards Lifesciences PVT, Inc.
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash, Amit Tubishevitz
  • Publication number: 20080154355
    Abstract: An implantable prosthetic valve assembly having a support stent, or frame, having circumferential struts with multiple bends forming obtuse angles when the valve assembly is expanded to its functional size. The frame can be manufactured with one or more of the circumferential struts in a partially collapsed state and a flexible valve member can be mounted to the partially collapsed frame. The partially collapsed struts can be formed with multiple bends having angles selected to facilitate crimping of the frame to a profile suitable for percutaneous delivery. When the frame is expanded, the bends can expand to form obtuse angles, thereby enhancing the rigidity of the frame to better resist closing forces exerted on the valve assembly.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventors: Netanel Benichou, Benjamin Spenser, Assaf Bash
  • Publication number: 20070293944
    Abstract: The present invention provides a series of new percutaneous concepts of paravalvular repairs including identifying the leak location, several repair techniques and finally built-in means for leak prevention, built on percutaneous valves. A catheter-delivered device locates cavities occurring between a prosthetic valve and the wall of the body vessel where the valve is implanted, the cavities producing paravalvular leaks during diastole, the device comprising at least one of a plurality of flexible wires, the wire having attached to it a balloon, wherein the balloon is pulled by the leak through the cavity and wherein the wire then serves to mark the cavity location.
    Type: Application
    Filed: August 29, 2007
    Publication date: December 20, 2007
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash
  • Patent number: 7276078
    Abstract: The present invention provides a series of new percutaneous concepts of paravalvular repairs including identifying the leak location, several repair techniques and finally built-in means for leak prevention, built on percutaneous valves. A catheter-delivered device locates cavities occurring between a prosthetic valve and the wall of the body vessel where the valve is implanted, the cavities producing paravalvular leaks during diastole, the device comprising at least one of a plurality of flexible wires, the wire having attached to it a balloon, wherein the balloon is pulled by the leak through the cavity and wherein the wire then serves to mark the cavity location.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: October 2, 2007
    Assignee: Edwards Lifesciences PVT
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash
  • Publication number: 20070056346
    Abstract: An improved crimping mechanism well-suited for use with stented prosthetic heart valves. The crimping mechanism includes a plurality of jaws configured for linear non-rotational movement toward a central axis. A rotational plate is formed with a plurality of spiral grooves or tracks for engaging the jaws. Rotational movement of the spiral tracks produces linear movement of the jaws. Nesting of the inner ends of the jaws permits each to be acted on along different radial lines while their inner faces move together evenly to reduce the crimping aperture in a smooth fashion. The crimping mechanism is particularly well-suited for use with stented prosthetic heart valves, such as a prosthetic aortic valve, though it can also be applied to other stented heart valves, venous valves, and even stent grafts which tend to be fairly large.
    Type: Application
    Filed: September 8, 2006
    Publication date: March 15, 2007
    Inventors: Benjamin Spenser, Netanel Benichou
  • Publication number: 20070061009
    Abstract: An improved crimping mechanism and method well-suited for use with stented prosthetic heart valves. The crimping mechanism includes a plurality of jaws configured for linear non-rotational movement toward a central axis. A rotational plate is formed with a plurality of spiral grooves or tracks for engaging the jaws. Rotational movement of the spiral tracks produces linear movement of the jaws. Nesting of the inner ends of the jaws permits each to be acted on along different radial lines while their inner faces move together evenly to reduce the crimping aperture in a smooth fashion. The crimping mechanism is particularly well-suited for use with stented prosthetic heart valves, such as a prosthetic aortic valve, though it can also be applied to other stented heart valves, venous valves, and even stent grafts which tend to be fairly large.
    Type: Application
    Filed: October 5, 2006
    Publication date: March 15, 2007
    Inventors: Benjamin Spenser, Netanel Benichou
  • Publication number: 20060287717
    Abstract: A two-stage or component-based valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve comprises a support structure that is deployed at a treatment site. The prosthetic valve further comprises a valve member configured to be quickly connected to the support structure. The support structure may take the form of a stent that is expanded at the site of a native valve. If desired, the native leaflets may remain and the stent may be used to hold the native valve open. In this case, the stent may be balloon expandable and configured to resist the powerful recoil force of the native leaflets. The support structure is provided with a coupling means for attachment to the valve member, thereby fixing the position of the valve member in the body. The valve member may be a non-expandable type, or may be expandable from a compressed state to an expanded state.
    Type: Application
    Filed: May 24, 2006
    Publication date: December 21, 2006
    Inventors: Stanton Rowe, Larry Wood, Henry Bourang, George Bakis, Benjamin Spenser, Netanel Benichou, Yaron Keidar, Assaf Bash
  • Publication number: 20060287719
    Abstract: A two-stage or component-based valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve comprises a support structure that is deployed at a treatment site. The prosthetic valve further comprises a valve member configured to be quickly connected to the support structure. The support structure may take the form of a stent that is expanded at the site of a native valve. If desired, the native leaflets may remain and the stent may be used to hold the native valve open. In this case, the stent may be balloon expandable and configured to resist the powerful recoil force of the native leaflets. The support structure is provided with a coupling means for attachment to the valve member, thereby fixing the position of the valve member in the body. The valve member may be a non-expandable type, or may be expandable from a compressed state to an expanded state.
    Type: Application
    Filed: May 24, 2006
    Publication date: December 21, 2006
    Inventors: Stanton Rowe, Larry Wood, Henry Bourang, George Bakis, Benjamin Spenser, Netanel Benichou, Yaron Keidar, Assaf Bash
  • Publication number: 20060004439
    Abstract: A system for percutaneously introducing a prosthetic valve into a patient's vasculature comprises a balloon dilatation catheter, a prosthetic valve mounted coaxial to the dilatation balloon, and a pusher member comprising a longitudinally extending tubular member encompassing the shaft of the catheter. The distal end of the pusher member preferably corresponds to the proximal end of the stent component of the prosthetic valve. The pusher member provides enhanced longitudinal pushability for facilitating advancement of the prosthetic valve to a treatment site. The system is well-suited for advancing a prosthetic valve or other medical device through an introducer sheath having a relatively small inner diameter. The introducer sheath may be formed with a tapered proximal end portion for receiving the prosthetic valve and for reducing a diameter of the prosthetic valve during advancement therethrough.
    Type: Application
    Filed: June 29, 2005
    Publication date: January 5, 2006
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash, Amit Tubishevitz
  • Publication number: 20060004442
    Abstract: The present invention provides a series of new percutaneous concepts of paravalvular repairs including identifying the leak location, several repair techniques and finally built-in means for leak prevention, built on percutaneous valves. A catheter-delivered device locates cavities occurring between a prosthetic valve and the wall of the body vessel where the valve is implanted, the cavities producing paravalvular leaks during diastole, the device comprising at least one of a plurality of flexible wires, the wire having attached to it a balloon, wherein the balloon is pulled by the leak through the cavity and wherein the wire then serves to mark the cavity location.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash