Patents by Inventor Netanel Benichou

Netanel Benichou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190159894
    Abstract: Embodiments of a radially collapsible and expandable prosthetic heart valve are disclosed. A valve frame can have a tapered profile when mounted on a delivery shaft, with an inflow end portion having a smaller diameter than an outflow end portion. The valve can comprise generally V-shaped leaflets, reducing material within the inflow end of the frame. An outer skirt can be secured to the outside of the inflow end portion of the frame, the outer skirt having longitudinal slack when the valve is expanded and lying flat against the frame when the valve is collapsed. A diagonally woven inner skirt can elongate axially with the frame. Side tabs of adjacent leaflets can extend through and be secured to window frame portions of the frame to form commissures. The window frame portions can be depressed radially inward relative to surrounding frame portions when the valve is crimped onto a delivery shaft.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 30, 2019
    Applicant: Edwards Lifesciences Corporation
    Inventors: Tamir S. Levi, Son V. Nguyen, Netanel Benichou, David Maimon, Ziv Yohanan, Nikolay Gurovich, Bella Felsen, Larisa Dadonkina, Ron Sharoni, Elena Sherman
  • Patent number: 10299923
    Abstract: A method of crimping an implantable prosthetic valve can include placing protective material over at least a portion of the implantable prosthetic valve. The protective material can be configured to occupy space between open cells of a frame of the implantable prosthetic valve to prevent damage to a leaflet structure of the implantable prosthetic valve. The method can also include crimping the implantable prosthetic valve with the protective material on the implantable prosthetic valve, and removing the protective material from between the frame and the leaflet structure of the implantable prosthetic valve.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: May 28, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Ilia Hariton, Netanel Benichou, Yaacov Nitzan, Bella Felsen, Diana Nguyen-Thien-Nhon, Rajesh A. Khanna, Son V. Nguyen, Tamir S. Levi, Itai Pelled
  • Patent number: 10292817
    Abstract: A method of crimping an implantable prosthetic valve can include placing protective material over at least a portion of the implantable prosthetic valve. The protective material can be configured to occupy space between open cells of a frame of the implantable prosthetic valve to prevent damage to a leaflet structure of the implantable prosthetic valve. The method can also include crimping the implantable prosthetic valve with the protective material on the implantable prosthetic valve, and removing the protective material from between the frame and the leaflet structure of the implantable prosthetic valve.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: May 21, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Ilia Hariton, Netanel Benichou, Yaacov Nitzan, Bella Felsen, Diana Nguyen-Thien-Nhon, Rajesh A. Khanna, Son V. Nguyen, Tamir S. Levi, Itai Pelled
  • Publication number: 20190142583
    Abstract: An implantable prosthetic valve has an upper frame section and a lower frame section. The upper frame section has a plurality of struts and a first leaflet receiving surface at a lower portion of the upper frame section. The lower frame section has a second leaflet receiving surface at an upper portion of the lower frame section. An edge of a flexible leaflet is disposed between the first and second leaflet receiving surfaces to attach the leaflet to the upper and lower frame sections.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 16, 2019
    Applicant: Edwards Lifesciences Corporation
    Inventor: Netanel Benichou
  • Publication number: 20190133760
    Abstract: An implantable prosthetic valve has an upper frame section and a lower frame section. The upper frame section has a plurality of struts and a first leaflet receiving surface at a lower portion of the upper frame section. The lower frame section has a second leaflet receiving surface at an upper portion of the lower frame section. An edge of a flexible leaflet is disposed between the first and second leaflet receiving surfaces to attach the leaflet to the upper and lower frame sections.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 9, 2019
    Applicant: Edwards Lifesciences Corporation
    Inventor: Netanel Benichou
  • Publication number: 20190099269
    Abstract: A method of crimping an implantable prosthetic valve can include placing protective material over at least a portion of the implantable prosthetic valve. The protective material can be configured to occupy space between open cells of a frame of the implantable prosthetic valve to prevent damage to a leaflet structure of the implantable prosthetic valve. The method can also include crimping the implantable prosthetic valve with the protective material on the implantable prosthetic valve, and removing the protective material from between the frame and the leaflet structure of the implantable prosthetic valve.
    Type: Application
    Filed: November 28, 2018
    Publication date: April 4, 2019
    Applicant: Edwards Lifesciences Corporation
    Inventors: Ilia Hariton, Netanel Benichou, Yaacov Nitzan, Bella Felsen, Diana Nguyen-Thien-Nhon, Rajesh A. Khanna, Son V. Nguyen, Tamir S. Levi, Itai Pelled
  • Publication number: 20190099268
    Abstract: A method of crimping an implantable prosthetic valve can include placing protective material over at least a portion of the implantable prosthetic valve. The protective material can be configured to occupy space between open cells of a frame of the implantable prosthetic valve to prevent damage to a leaflet structure of the implantable prosthetic valve. The method can also include crimping the implantable prosthetic valve with the protective material on the implantable prosthetic valve, and removing the protective material from between the frame and the leaflet structure of the implantable prosthetic valve.
    Type: Application
    Filed: November 28, 2018
    Publication date: April 4, 2019
    Applicant: Edwards Lifesciences Corporation
    Inventors: Ilia Hariton, Netanel Benichou, Yaacov Nitzan, Bella Felsen, Diana Nguyen-Thien-Nhon, Rajesh A. Khanna, Son V. Nguyen, Tamir S. Levi, Itai Pelled
  • Publication number: 20190091018
    Abstract: A method of crimping an implantable prosthetic valve can include placing protective material over at least a portion of the implantable prosthetic valve. The protective material can be configured to occupy space between open cells of a frame of the implantable prosthetic valve to prevent damage to a leaflet structure of the implantable prosthetic valve. The method can also include crimping the implantable prosthetic valve with the protective material on the implantable prosthetic valve, and removing the protective material from between the frame and the leaflet structure of the implantable prosthetic valve.
    Type: Application
    Filed: November 28, 2018
    Publication date: March 28, 2019
    Applicant: Edwards Lifesciences Corporation
    Inventors: Ilia Hariton, Netanel Benichou, Yaacov Nitzan, Bella Felsen, Diana Nguyen-Thien-Nhon, Rajesh A. Khanna, Son V. Nguyen, Tamir S. Levi, Itai Pelled
  • Publication number: 20190091017
    Abstract: A two-stage or component-based valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve comprises a support structure that is deployed at a treatment site. The prosthetic valve further comprises a valve member configured to be quickly connected to the support structure. The support structure may take the form of a stent that is expanded at the site of a native valve. If desired, the native leaflets may remain and the stent may be used to hold the native valve open. In this case, the stent may be balloon expandable and configured to resist the powerful recoil force of the native leaflets. The support structure is provided with a coupling means for attachment to the valve member, thereby fixing the position of the valve member in the body. The valve member may be a non-expandable type, or may be expandable from a compressed state to an expanded state.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 28, 2019
    Applicant: Edwards Lifesciences Corporation
    Inventors: Stanton J. Rowe, Larry L. Wood, Henry Bourang, George Bakis, Benjamin Spenser, Netanel Benichou, Assaf Bash, Yaron Keidar
  • Patent number: 10238487
    Abstract: Embodiments of the present disclosure provide a prosthetic heart valve and a heart valve delivery apparatus for delivery of the prosthetic heart valve to a native valve site via the human vasculature. The delivery apparatus is particularly suited for advancing a prosthetic valve through the aorta (i.e., in a retrograde approach) for replacing a diseased native aortic valve. In one embodiment, a self-expanding valve comprises an expandable stent that is shaped to maintain the valve in the aortic annulus against axial without anchors or retaining devices that engage the surrounding tissue. A delivery apparatus for delivering s self-expanding prosthetic valve can be configured to allow controlled and precise deployment of the valve from a valve sheath so as to minimize or prevent jumping of the valve from the valve sheath.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: March 26, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: David Alon, Netanel Benichou, Oded Meiri
  • Patent number: 10231835
    Abstract: A prosthesic valve for implantation in a body duct that can cover a range of target sizes by a single device. The valve comprises of three main elements: 1) a support cylindrical frame structure that can be collapsed to a small diameter for insertion into the body and that can expand to a large diameter when positioned in the target implantation site, the expansion of the frame being limited by the native valve diameter, which the valve is implanted within. In some cases this may be self-expandable; 2) A frustoconical leaflet support frame that has an inflow side and an outflow side.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: March 19, 2019
    Assignee: TRUELEAF MEDICAL LTD.
    Inventor: Netanel Benichou
  • Patent number: 10226338
    Abstract: A two-stage or component-based valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve comprises a support structure that is deployed at a treatment site. The prosthetic valve further comprises a valve member configured to be quickly connected to the support structure. The support structure may take the form of a stent that is expanded at the site of a native valve. If desired, the native leaflets may remain and the stent may be used to hold the native valve open. In this case, the stent may be balloon expandable and configured to resist the powerful recoil force of the native leaflets. The support structure is provided with a coupling means for attachment to the valve member, thereby fixing the position of the valve member in the body. The valve member may be a non-expandable type, or may be expandable from a compressed state to an expanded state.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: March 12, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Stanton J. Rowe, Larry L. Wood, Henry Bourang, George Bakis, Benjamin Spenser, Netanel Benichou, Assaf Bash, Yaron Keidar
  • Publication number: 20190069994
    Abstract: This application relates to methods, systems, and apparatus for replacing native heart valves with prosthetic heart valves and treating valvular insufficiency. In a representative embodiment, a support frame configured to be implanted in a heart valve comprises a main body formed by formed by a plurality of inner members forming an inner clover and a plurality of outer members forming an outer clover. The support frame can include gaps located between inner members of the plurality of inner members and outer members of the plurality of outer members. The inner clover can be radially inside the outer clover, and the outer clover can have larger dimensions than the inner clover. The support frames herein can be radially expandable and collapsible.
    Type: Application
    Filed: November 6, 2018
    Publication date: March 7, 2019
    Inventors: Emil Karapetian, Maria Charles Vija Stanislaus, Gregory Bak-Boychuk, Christopher J. Olson, Cristobal R. Hernandez, William C. Brunnett, Netanel Benichou, Lauren R. Freschauf, Alexander J. Siegel, Stanton J. Rowe, Alison S. Curtis
  • Publication number: 20180344458
    Abstract: An implantable prosthetic valve includes an annular metallic frame and a valve assembly supported within the frame. The annular support frame is constructed with three longitudinal support beams of fixed length and web-like constructions that extend between and connect the support beams. The support beams are spaced apart in a substantially equidistant manner. The web-like constructions allow the annular support frame to be radially collapsible and expandable. Each support beam preferably has a column of pre-formed openings or bores extending along a length of the support beam. The valve assembly includes three valve leaflets, wherein each leaflet has opposing side portions and each side portion is paired with an adjacent side portion of an adjacent leaflet to form a commissure. The three commissures are secured to three respective support beams with stitching that extends through the leaflets and through the pre-formed openings or bores.
    Type: Application
    Filed: August 2, 2018
    Publication date: December 6, 2018
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash, Avraham Zakai
  • Patent number: 10130468
    Abstract: A two-stage or component-based valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve comprises a support structure that is deployed at a treatment site. The prosthetic valve further comprises a valve member configured to be quickly connected to the support structure. The support structure may take the form of a stent that is expanded at the site of a native valve. If desired, the native leaflets may remain and the stent may be used to hold the native valve open. In this case, the stent may be balloon expandable and configured to resist the powerful recoil force of the native leaflets. The support structure is provided with a coupling means for attachment to the valve member, thereby fixing the position of the valve member in the body. The valve member may be a non-expandable type, or may be expandable from a compressed state to an expanded state.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: November 20, 2018
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Stanton J. Rowe, Larry L. Wood, Henry Bourang, George Bakis, Benjamin Spenser, Netanel Benichou, Assaf Bash, Yaron Keidar
  • Publication number: 20180263769
    Abstract: A method of crimping an implantable prosthetic valve can include placing protective material over at least a portion of the implantable prosthetic valve. The protective material can be configured to occupy space between open cells of a frame of the implantable prosthetic valve to prevent damage to a leaflet structure of the implantable prosthetic valve. The method can also include crimping the implantable prosthetic valve with the protective material on the implantable prosthetic valve, and removing the protective material from between the frame and the leaflet structure of the implantable prosthetic valve.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 20, 2018
    Inventors: Ilia Hariton, Netanel Benichou, Yaacov Nitzan, Bella Felsen, Diana Nguyen-Thien-Nhon, Rajesh A. Khanna, Son V. Nguyen, Tamir S. Levi, Itai Pelled
  • Patent number: 10052203
    Abstract: A prosthetic heart valve comprises a radially crimpable and radially expandable, net-like, annular support frame and a valve assembly disposed therein, the valve assembly comprising a conduit tapering from an inlet towards an outlet thereof. Some embodiments or the support frame comprise a proximal portion and a distal portion, a diameter of the proximal portion smaller than a diameter of the distal portion. The proximal portion is dimensioned for deployment in an annulus of a native aortic valve and a distal portion for deployment in an ascending aorta. Some embodiments of the conduit comprise a support construction with a three-cusp, crown-shaped cut line, the support construction sutured to the support frame around a bottom portion thereof and around the cut line. A method for using the prosthetic heart valve to replace a defective native aortic valve uses a minimally invasive procedure.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: August 21, 2018
    Assignee: Edwards Lifesciences PVT, Inc.
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash, Avraham Zakai
  • Publication number: 20180228606
    Abstract: Embodiments of the present disclosure provide methods of loading a prosthetic heart valve within a delivery apparatus such that it can be used for delivery of the prosthetic heart valve to a native valve site via the human vasculature. The methods can include attaching the prosthetic heart valve to a valve-retaining mechanism at a distal end of the catheter and causing a torque shaft of the delivery apparatus to rotate relative to the catheter, wherein the torque shaft extends within the catheter and is coupled to the valve delivery sheath. Rotation of the torque shaft relative to the catheter can cause relative longitudinal movement between the valve sheath and the prosthetic heart valve such that the prosthetic heart valve is covered by the valve sheath.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 16, 2018
    Inventors: David Alon, Netanel Benichou, Oded Meiri
  • Publication number: 20180228607
    Abstract: Methods for delivering a prosthetic valve comprise introducing the prosthetic heart valve into a body of a patient. The prosthetic valve is mounted within a delivery sheath of a delivery apparatus in a radially compressed state. The prosthetic valve is advanced through the body to a delivery location. A motor is actuated to cause the delivery sheath to retract to expose the prosthetic valve and the prosthetic valve expands to a radially expanded state at the delivery location. The methods can also include releasing the prosthetic valve from the delivery apparatus and removing the delivery apparatus from the patient.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 16, 2018
    Inventors: David Alon, Netanel Benichou, Oded Meiri
  • Publication number: 20180200054
    Abstract: A system for replacing a deficient native aortic valve includes an implantable prosthetic valve having a self-expandable frame and a valve assembly formed with three valve leaflets. The self-expandable frame includes three angularly spaced longitudinal bars of fixed length defining respective slots and a plurality of web-like constructions extending between and connected to the longitudinal bars. The valve assembly includes commissures extending outwardly through the slots where they are supported on the outside of the frame. Each leaflet includes an inlet end portion secured to the inside of the frame with stitching extending through the leaflet and around adjacent frame portions. The system also includes a restriction tube adapted for insertion into a patient's body. The prosthetic valve is capable of being crimped for insertion into the restriction tube and capable of self-expansion upon release from the restriction tube for deployment in the deficient native aortic valve.
    Type: Application
    Filed: March 13, 2018
    Publication date: July 19, 2018
    Applicant: Edwards Lifesciences PVT, Inc.
    Inventors: Benjamin Spenser, Netanel Benichou, Assaf Bash, Avraham Zakai