Patents by Inventor Niamh Waldron

Niamh Waldron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150279725
    Abstract: The disclosed technology generally relates to semiconductor-on-insulator (SOI) devices and more particularly to SOI devices having a channel region comprising a Group III-V or a Group IV semiconductor material, and also relates to methods of fabricating the same. In one aspect, a method comprises providing a pre-patterned donor wafer, providing a handling wafer and bonding the pre-patterned donor wafer to the handling wafer by contacting the first oxide layer to the handling wafer. Providing a pre-patterned donor wafer comprises providing a donor substrate comprising a first semiconductor material, forming shallow trench isolation (STI) regions in the donor substrate, and forming fins in the donor substrate in between the STI regions, where each fin comprises a Group III-V or Group IV semiconductor material that is different from the first semiconducting material and laterally extends in a direction parallel to a major surface of the donor substrate and between the STI regions.
    Type: Application
    Filed: March 30, 2015
    Publication date: October 1, 2015
    Inventor: Niamh Waldron
  • Publication number: 20150279947
    Abstract: The disclosed technology generally relates to semiconductor devices and more particularly to a gate-all-around semiconductor device, and methods of fabricating the same. In one aspect, the method comprises providing on a semiconductor substrate between STI regions at least one suspended nanostructure anchored by a source region and a drain region. The suspended nanostructure is formed of a crystalline semiconductor material that is different from a crystalline semiconductor material of the semiconductor substrate. A gate stack surrounds the at least one suspended nanostructure.
    Type: Application
    Filed: March 27, 2015
    Publication date: October 1, 2015
    Inventors: Niamh Waldron, Clement Merckling, Nadine Collaert
  • Publication number: 20150076620
    Abstract: The disclosed technology generally relates to semiconductor devices, and more particularly to different types of transistors having different channel materials. In one aspect, a method of fabricating a semiconductor device includes providing a substrate comprising a silicon substrate having a main surface oriented in a {100} crystal plane and having a notch oriented in a <100> direction. The method additionally includes forming a plurality of silicon protrusions in a first predetermined region by recessing portions of the main surface surrounding the silicon protrusions. The method additionally includes forming shallow trench isolation (STI) structures adjacent to the silicon protrusions to electrically isolate the silicon protrusions, thereby defining channel areas of a transistor of a first type. The method further includes removing at least upper portions of the silicon protrusions, thereby forming trenches between neighboring STI structures and filling the trenches with a III-V material.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 19, 2015
    Inventors: Niamh WALDRON, Liesbeth WITTERS
  • Patent number: 8912055
    Abstract: Disclosed are methods for forming hybrid metal-oxide-semiconductor field effect transistors (MOSFETs) and the hybrid MOSFETS thus obtained. In one embodiment, a method is disclosed that includes providing a first substrate comprising a first region and a second region, providing a second substrate comprising a second semiconductor layer and an insulating layer overlaying the second semiconductor layer, and direct substrate bonding the second substrate to the first substrate, thereby contacting the first region and the second region with the insulating layer. The method further includes selectively removing the second semiconductor layer and the insulating layer in the first region, thereby exposing the first semiconductor layer in the first region, forming a first gate stack of a first MOSFET on the exposed first semiconductor layer in the first region, and forming a second gate stack of a second MOSFET on the second semiconductor layer in the second region.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: December 16, 2014
    Assignee: IMEC
    Inventors: Thomas Y. Hoffman, Matty Caymax, Niamh Waldron, Geert Hellings
  • Publication number: 20120280326
    Abstract: Disclosed are methods for forming hybrid metal-oxide-semiconductor field effect transistors (MOSFETs) and the hybrid MOSFETS thus obtained. In one embodiment, a method is disclosed that includes providing a first substrate comprising a first region and a second region, providing a second substrate comprising a second semiconductor layer and an insulating layer overlaying the second semiconductor layer, and direct substrate bonding the second substrate to the first substrate, thereby contacting the first region and the second region with the insulating layer. The method further includes selectively removing the second semiconductor layer and the insulating layer in the first region, thereby exposing the first semiconductor layer in the first region, forming a first gate stack of a first MOSFET on the exposed first semiconductor layer in the first region, and forming a second gate stack of a second MOSFET on the second semiconductor layer in the second region.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: IMEC
    Inventors: Thomas Y. Hoffmann, Matty Caymax, Niamh Waldron, Geert Hellings
  • Publication number: 20120032234
    Abstract: Methods of manufacturing a III-V compound semiconductor material, and the semiconductor material thus manufactured, are disclosed. In one embodiment, the method comprises providing a substrate comprising a first semiconductor material having a {001} orientation and an insulating layer overlaying the first semiconductor material. The insulating layer comprises a recessed region exposing an exposed region of the first semiconductor material. The method further comprises forming a buffer layer overlaying the exposed region that comprises a group IV semiconductor material. The method further comprises thermally annealing the substrate and the buffer layer, thereby roughening the buffer layer to create a rounded, double-stepped surface having a step density and a step height. A product of the step density and the step height is greater than or equal to 0.05 on the surface.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 9, 2012
    Applicants: Katholieke Universiteit Leuven, K.U. Leuven R&D, IMEC
    Inventors: Gang Wang, Matty Caymax, Maarten Leys, Wei-E Wang, Niamh Waldron