Patents by Inventor Nicholas Evan Barker

Nicholas Evan Barker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230147750
    Abstract: A wearable device including at least one sensor configured to sense a physiological parameter of a user. The wearable device including a base housing and a removable housing attachable to the base housing. The base housing and the removable housing portions each including a battery and an electronic subsystem in communication with each other. The battery of the removable housing portion charges the battery of the base housing portion when the removable housing portion is attached to the base housing portion. A second embodiment includes two or more fitness trackers each having an enclosure. The enclosures of the two or more fitness trackers having complimentary shapes that form a unified enclosure when the enclosures are placed adjacently. In a third embodiment, a wearable device includes a first screen display and a second screen display. The second screen display is transparent in at least one operational mode of the wearable device.
    Type: Application
    Filed: August 17, 2022
    Publication date: May 11, 2023
    Inventors: Nicholas Evan Barker, Bilal Muhsin, Massi Joe E. Kiani
  • Patent number: 11596365
    Abstract: A multi-parameter patient monitoring device rack can dock a plurality of patient monitor modules and can communicate with a separate display unit. A signal processing unit can be incorporated into the device rack. A graphics processing unit can be attached to the display unit. The device rack and the graphic display unit can have improved heat dissipation and drip-proof features. The multi-parameter patient monitoring device rack can provide interchangeability and versatility to a multi-parameter patient monitoring system by allowing use of different display units and monitoring of different combinations of parameters. A dual-use patient monitor module can have its own display unit configured for displaying one or more parameters when used as a stand-alone device, and can be docked into the device rack when a handle on the module is folded down.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: March 7, 2023
    Assignee: Masimo Corporation
    Inventors: Nicholas Evan Barker, Chad A. DeJong, Kirby Clark Dotson, Ammar Al-Ali, Bilal Muhsin, Sujin Hwang, Massi Joe E. Kiani
  • Publication number: 20220039763
    Abstract: A multi-parameter patient monitoring device rack can dock a plurality of patient monitor modules and can communicate with a separate display unit. A signal processing unit can be incorporated into the device rack. A graphics processing unit can be attached to the display unit. The device rack and the graphic display unit can have improved heat dissipation and drip-proof features. The multi-parameter patient monitoring device rack can provide interchangeability and versatility to a multi-parameter patient monitoring system by allowing use of different display units and monitoring of different combinations of parameters. A dual-use patient monitor module can have its own display unit configured for displaying one or more parameters when used as a stand-alone device, and can be docked into the device rack when a handle on the module is folded down.
    Type: Application
    Filed: July 16, 2021
    Publication date: February 10, 2022
    Inventors: Nicholas Evan Barker, Chad A. DeJong, Kirby Clark Dotson, Ammar Al-Ali, Bilal Muhsin, Sujin Hwang, Massi Joe E. Kiani
  • Publication number: 20210330188
    Abstract: A patient monitoring device can be configured to provide fast and reliable physiological measurements in a variety of care settings including at a patient's home. The device can include a compact, standalone monitor with telehealth capabilities as well as an intuitive interface for use at home. The device can include a blood pressure, capnography, or pulse oximetry module. A device can include a sleek and continuous outer surface that is easy to clean and generally free of crevices, holes, or surfaces that collect external contaminants. For example, portions of the housing can connect together using a limited number of screws, thereby limiting a number of holes. The device can include a vent cover that can be rotated to reconfigure the function of the vent cover. For example, the vent cover can function as a stabilization feature and/or a cover for a ventilation hole, while permitting exhaust through the ventilation hole.
    Type: Application
    Filed: February 5, 2021
    Publication date: October 28, 2021
    Inventors: Ammar Al-Ali, Nicholas Evan Barker, Steven Egge, Chad A. DeJong, Sujin Hwang, Massi Joe E. Kiani, Bilal Muhsin
  • Publication number: 20210290080
    Abstract: Systems and methods are provided for remote patient management and monitoring. The patient is monitored with a wireless sensor system connected to an application executing on a patient user computing device. The system continuously monitors physiological parameters, such as, but not limited to, blood oxygen saturation (SpO2), pulse rate, perfusion index, pleth variability index, and/or respiration rate from the photoplethysmograph. The system triggers alarms if the patient physiological data violates thresholds. Care providers review patient data and associated alarm(s) with graphical user interfaces.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 23, 2021
    Inventors: Omar Ahmed, Nicholas Evan Barker, Keith Ward Indorf, Sungwhan Cha, Sebastian T. Frey, Hyejin Cho
  • Publication number: 20210290060
    Abstract: Systems and methods are provided for remote patient management and monitoring. The patient is monitored with a wireless sensor system connected to an application executing on a patient user computing device. The system continuously monitors physiological parameters, such as, but not limited to, blood oxygen saturation (SpO2), pulse rate, perfusion index, pleth variability index, and/or respiration rate from the photoplethysmograph. The system triggers alarms if the patient physiological data violates thresholds. Care providers review patient data and associated alarm(s) with graphical user interfaces.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 23, 2021
    Inventors: Omar Ahmed, Nicholas Evan Barker, Keith Ward Indorf, Sungwhan Cha, Sebastian T. Frey, Hyejin Cho
  • Publication number: 20210290184
    Abstract: Systems and methods are provided for remote patient management and monitoring. The patient is monitored with a wireless sensor system connected to an application executing on a patient user computing device. The system continuously monitors physiological parameters, such as, but not limited to, blood oxygen saturation (SpO2), pulse rate, perfusion index, pleth variability index, and/or respiration rate from the photoplethysmograph. The system triggers alarms if the patient physiological data violates thresholds. Care providers review patient data and associated alarm(s) with graphical user interfaces.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 23, 2021
    Inventors: Omar Ahmed, Nicholas Evan Barker, Keith Ward Indorf, Sungwhan Cha, Sebastian T. Frey, Hyejin Cho
  • Patent number: 11096631
    Abstract: A multi-parameter patient monitoring device rack can dock a plurality of patient monitor modules and can communicate with a separate display unit. A signal processing unit can be incorporated into the device rack. A graphics processing unit can be attached to the display unit. The device rack and the graphic display unit can have improved heat dissipation and drip-proof features. The multi-parameter patient monitoring device rack can provide interchangeability and versatility to a multi-parameter patient monitoring system by allowing use of different display units and monitoring of different combinations of parameters. A dual-use patient monitor module can have its own display unit configured for displaying one or more parameters when used as a stand-alone device, and can be docked into the device rack when a handle on the module is folded down.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: August 24, 2021
    Assignee: Masimo Corporation
    Inventors: Nicholas Evan Barker, Chad A. DeJong, Kirby Clark Dotson, Ammar Al-Ali, Bilal Muhsin, Sujin Hwang, Massi Joe E. Kiani
  • Publication number: 20210251538
    Abstract: A first medical device can acquire a physiological parameter value from a patient and communicate the physiological parameter value to a medical network interface. The medical network interface can link a patient ID associated with the physiological parameter and a device ID associated with the first medical device with the medical network interface's device ID. The medical network interface can pass the physiological parameter value to a second medical device for further processing or routing to another medical device.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 19, 2021
    Inventors: Bilal Muhsin, Nicholas Evan Barker
  • Publication number: 20210210899
    Abstract: A cable tether system includes a base member and at least one elongate member extending away from the base member. The elongate member is configured to surround at least a portion of a first cable. A second elongate member can be configured to surround at least a portion of a second cable. The base member can include one or more engagement portions that couple with one or more engagement portions on the first and second elongate members.
    Type: Application
    Filed: February 8, 2021
    Publication date: July 8, 2021
    Inventors: Nicholas Evan Barker, Susan Denton, Eric Yang, Sujin Hwang
  • Publication number: 20210161442
    Abstract: A device for obtaining physiological information of a medical patient and wirelessly transmitting the obtained physiological information to a wireless receiver.
    Type: Application
    Filed: December 30, 2020
    Publication date: June 3, 2021
    Inventors: James P. Welch, Massi Joe E. Kiani, Gregory A. Olsen, Nicholas Evan Barker
  • Publication number: 20210161465
    Abstract: An overdose of opioids can cause the user to stop breathing, resulting in death. A physiological monitoring system packaged as a kit includes a sensor assembly including a sensor that is configured to sense the at least one physiological parameter, a base station that includes a processor and memory storing instructions that when executed cause the processor to process data from the sensor to provide the at least one physiological parameter and to determine an opioid overdose event based on the at least one physiological parameter, a self-administrating medication applicator having an injector and a dose of an opioid receptor antagonist, and a tray having molded depressions to hold the base station, the sensor assembly, and the self-administrating medication applicator.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 3, 2021
    Inventors: Nicholas Evan Barker, Bilal Muhsin, Ammar Al-Ali, Omar Ahnmed, Massi Joe E. Kiani
  • Publication number: 20210134130
    Abstract: A modular patient monitor provides a multipurpose, scalable solution for various patient monitoring applications. In an embodiment, a modular patient monitor utilizes multiple wavelength optical sensor and/or acoustic sensor technologies to provide blood constituent monitoring and acoustic respiration monitoring (ARM) at its core, including pulse oximetry parameters and additional blood parameter measurements such as carboxyhemoglobin (HbCO) and methemoglobin (HbMet). Expansion modules provide blood pressure BP, blood glucose, ECG, CO2, depth of sedation and cerebral oximetry to name a few. Aspects of the present disclosure also include a transport dock for providing enhanced portability and functionally to handheld monitors. In an embodiment, the transport dock provides one or more docking interfaces for placing monitoring components in communication with other monitoring components. In an embodiment, the transport dock attaches to the modular patient monitor.
    Type: Application
    Filed: December 18, 2020
    Publication date: May 6, 2021
    Inventors: Massi Joe E. Kiani, Ammar Al-Ali, Michael O'Reilly, Paul Ronald Jansen, Nicholas Evan Barker, Anand Sampath
  • Publication number: 20210118581
    Abstract: A physiological patient monitoring system with a patient-facing interface is disclosed. The patient interface can be used by the patient to communicate with hospital staff without actually requesting attendance and can request attendance for specific purposes. The patient interface may also track patient treatment and inform patients of the details of their treatments.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Inventors: Massi Joe E. Kiani, Bilal Muhsin, Ammar Al-Ali, Nicholas Evan Barker, Chad A. DeJong, Omar Ahmed, Keith Ward Indorf, Steve Coon
  • Publication number: 20210117525
    Abstract: A physiological patient monitoring system with a healthcare professional-facing interface is disclosed. The healthcare professional interface may only display by default the most critical non-confidential patient information. To access the full range of features in the system, clinicians can unlock the device. Once unlocked, clinicians can access all of a patient's treatment history, and all the data may be consolidated and presented intuitively.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Inventors: Massi Joe E. Kiani, Bilal Muhsin, Ammar Al-Ali, Nicholas Evan Barker, Chad A. DeJong, Omar Ahmed, Keith Ward Indorf, Steve Coon
  • Patent number: 10943450
    Abstract: A modular patient monitor provides a multipurpose, scalable solution for various patient monitoring applications. In an embodiment, a modular patient monitor utilizes multiple wavelength optical sensor and/or acoustic sensor technologies to provide blood constituent monitoring and acoustic respiration monitoring (ARM) at its core, including pulse oximetry parameters and additional blood parameter measurements such as carboxyhemoglobin (HbCO) and methemoglobin (HbMet). Expansion modules provide blood pressure BP, blood glucose, ECG, CO2, depth of sedation and cerebral oximetry to name a few. Aspects of the present disclosure also include a transport dock for providing enhanced portability and functionally to handheld monitors. In an embodiment, the transport dock provides one or more docking interfaces for placing monitoring components in communication with other monitoring components. In an embodiment, the transport dock attaches to the modular patient monitor.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: March 9, 2021
    Assignee: Masimo Corporation
    Inventors: Massi Joe E. Kiani, Ammar Al-Ali, Michael O'Reilly, Paul Ronald Jansen, Nicholas Evan Barker, Anand Sampath
  • Patent number: 10932705
    Abstract: A first medical device can acquire a physiological parameter value from a patient and communicate the physiological parameter value to a medical network interface. The medical network interface can link a patient ID associated with the physiological parameter and a device ID associated with the first medical device with the medical network interface's device ID. The medical network interface can pass the physiological parameter value to a second medical device for further processing or routing to another medical device.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: March 2, 2021
    Assignee: Masimo Corporation
    Inventors: Bilal Muhsin, Nicholas Evan Barker
  • Patent number: 10918281
    Abstract: A patient monitoring device can be configured to provide fast and reliable physiological measurements in a variety of care settings including at a patient's home. The device can include a compact, standalone monitor with telehealth capabilities as well as an intuitive interface for use at home. The device can include a blood pressure, capnography, or pulse oximetry module. A device can include a sleek and continuous outer surface that is easy to clean and generally free of crevices, holes, or surfaces that collect external contaminants. For example, portions of the housing can connect together using a limited number of screws, thereby limiting a number of holes. The device can include a vent cover that can be rotated to reconfigure the function of the vent cover. For example, the vent cover can function as a stabilization feature and/or a cover for a ventilation hole, while permitting exhaust through the ventilation hole.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: February 16, 2021
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Nicholas Evan Barker, Steven Egge, Chad A. DeJong, Sujin Hwang, Massi Joe E. Kiani, Bilal Muhsin
  • Patent number: 10916882
    Abstract: A cable tether system includes a base member and at least one elongate member extending away from the base member. The elongate member is configured to surround at least a portion of a first cable. A second elongate member can be configured to surround at least a portion of a second cable. The base member can include one or more engagement portions that couple with one or more engagement portions on the first and second elongate members.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: February 9, 2021
    Assignee: MASIMO CORPORATION
    Inventors: Nicholas Evan Barker, Susan Denton, Eric Yang, Sujin Hwang
  • Publication number: 20200352525
    Abstract: A multi-parameter patient monitoring device rack can dock a plurality of patient monitor modules and can communicate with a separate display unit. A signal processing unit can be incorporated into the device rack. A graphics processing unit can be attached to the display unit. The device rack and the graphic display unit can have improved heat dissipation and drip-proof features. The multi-parameter patient monitoring device rack can provide interchangeability and versatility to a multi-parameter patient monitoring system by allowing use of different display units and monitoring of different combinations of parameters. A dual-use patient monitor module can have its own display unit configured for displaying one or more parameters when used as a stand-alone device, and can be docked into the device rack when a handle on the module is folded down.
    Type: Application
    Filed: April 23, 2020
    Publication date: November 12, 2020
    Inventors: Nicholas Evan Barker, Chad A. DeJong, Kirby Clark Dotson, Ammar Al-Ali, Bilal Muhsin, Sujin Hwang, Massi Joe E. Kiani