Patents by Inventor Nicholas Evan Barker

Nicholas Evan Barker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210251538
    Abstract: A first medical device can acquire a physiological parameter value from a patient and communicate the physiological parameter value to a medical network interface. The medical network interface can link a patient ID associated with the physiological parameter and a device ID associated with the first medical device with the medical network interface's device ID. The medical network interface can pass the physiological parameter value to a second medical device for further processing or routing to another medical device.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 19, 2021
    Inventors: Bilal Muhsin, Nicholas Evan Barker
  • Publication number: 20210210899
    Abstract: A cable tether system includes a base member and at least one elongate member extending away from the base member. The elongate member is configured to surround at least a portion of a first cable. A second elongate member can be configured to surround at least a portion of a second cable. The base member can include one or more engagement portions that couple with one or more engagement portions on the first and second elongate members.
    Type: Application
    Filed: February 8, 2021
    Publication date: July 8, 2021
    Inventors: Nicholas Evan Barker, Susan Denton, Eric Yang, Sujin Hwang
  • Publication number: 20210161442
    Abstract: A device for obtaining physiological information of a medical patient and wirelessly transmitting the obtained physiological information to a wireless receiver.
    Type: Application
    Filed: December 30, 2020
    Publication date: June 3, 2021
    Inventors: James P. Welch, Massi Joe E. Kiani, Gregory A. Olsen, Nicholas Evan Barker
  • Publication number: 20210161465
    Abstract: An overdose of opioids can cause the user to stop breathing, resulting in death. A physiological monitoring system packaged as a kit includes a sensor assembly including a sensor that is configured to sense the at least one physiological parameter, a base station that includes a processor and memory storing instructions that when executed cause the processor to process data from the sensor to provide the at least one physiological parameter and to determine an opioid overdose event based on the at least one physiological parameter, a self-administrating medication applicator having an injector and a dose of an opioid receptor antagonist, and a tray having molded depressions to hold the base station, the sensor assembly, and the self-administrating medication applicator.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 3, 2021
    Inventors: Nicholas Evan Barker, Bilal Muhsin, Ammar Al-Ali, Omar Ahnmed, Massi Joe E. Kiani
  • Publication number: 20210134130
    Abstract: A modular patient monitor provides a multipurpose, scalable solution for various patient monitoring applications. In an embodiment, a modular patient monitor utilizes multiple wavelength optical sensor and/or acoustic sensor technologies to provide blood constituent monitoring and acoustic respiration monitoring (ARM) at its core, including pulse oximetry parameters and additional blood parameter measurements such as carboxyhemoglobin (HbCO) and methemoglobin (HbMet). Expansion modules provide blood pressure BP, blood glucose, ECG, CO2, depth of sedation and cerebral oximetry to name a few. Aspects of the present disclosure also include a transport dock for providing enhanced portability and functionally to handheld monitors. In an embodiment, the transport dock provides one or more docking interfaces for placing monitoring components in communication with other monitoring components. In an embodiment, the transport dock attaches to the modular patient monitor.
    Type: Application
    Filed: December 18, 2020
    Publication date: May 6, 2021
    Inventors: Massi Joe E. Kiani, Ammar Al-Ali, Michael O'Reilly, Paul Ronald Jansen, Nicholas Evan Barker, Anand Sampath
  • Publication number: 20210117525
    Abstract: A physiological patient monitoring system with a healthcare professional-facing interface is disclosed. The healthcare professional interface may only display by default the most critical non-confidential patient information. To access the full range of features in the system, clinicians can unlock the device. Once unlocked, clinicians can access all of a patient's treatment history, and all the data may be consolidated and presented intuitively.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Inventors: Massi Joe E. Kiani, Bilal Muhsin, Ammar Al-Ali, Nicholas Evan Barker, Chad A. DeJong, Omar Ahmed, Keith Ward Indorf, Steve Coon
  • Publication number: 20210118581
    Abstract: A physiological patient monitoring system with a patient-facing interface is disclosed. The patient interface can be used by the patient to communicate with hospital staff without actually requesting attendance and can request attendance for specific purposes. The patient interface may also track patient treatment and inform patients of the details of their treatments.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Inventors: Massi Joe E. Kiani, Bilal Muhsin, Ammar Al-Ali, Nicholas Evan Barker, Chad A. DeJong, Omar Ahmed, Keith Ward Indorf, Steve Coon
  • Patent number: 10943450
    Abstract: A modular patient monitor provides a multipurpose, scalable solution for various patient monitoring applications. In an embodiment, a modular patient monitor utilizes multiple wavelength optical sensor and/or acoustic sensor technologies to provide blood constituent monitoring and acoustic respiration monitoring (ARM) at its core, including pulse oximetry parameters and additional blood parameter measurements such as carboxyhemoglobin (HbCO) and methemoglobin (HbMet). Expansion modules provide blood pressure BP, blood glucose, ECG, CO2, depth of sedation and cerebral oximetry to name a few. Aspects of the present disclosure also include a transport dock for providing enhanced portability and functionally to handheld monitors. In an embodiment, the transport dock provides one or more docking interfaces for placing monitoring components in communication with other monitoring components. In an embodiment, the transport dock attaches to the modular patient monitor.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: March 9, 2021
    Assignee: Masimo Corporation
    Inventors: Massi Joe E. Kiani, Ammar Al-Ali, Michael O'Reilly, Paul Ronald Jansen, Nicholas Evan Barker, Anand Sampath
  • Patent number: 10932705
    Abstract: A first medical device can acquire a physiological parameter value from a patient and communicate the physiological parameter value to a medical network interface. The medical network interface can link a patient ID associated with the physiological parameter and a device ID associated with the first medical device with the medical network interface's device ID. The medical network interface can pass the physiological parameter value to a second medical device for further processing or routing to another medical device.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: March 2, 2021
    Assignee: Masimo Corporation
    Inventors: Bilal Muhsin, Nicholas Evan Barker
  • Patent number: 10918281
    Abstract: A patient monitoring device can be configured to provide fast and reliable physiological measurements in a variety of care settings including at a patient's home. The device can include a compact, standalone monitor with telehealth capabilities as well as an intuitive interface for use at home. The device can include a blood pressure, capnography, or pulse oximetry module. A device can include a sleek and continuous outer surface that is easy to clean and generally free of crevices, holes, or surfaces that collect external contaminants. For example, portions of the housing can connect together using a limited number of screws, thereby limiting a number of holes. The device can include a vent cover that can be rotated to reconfigure the function of the vent cover. For example, the vent cover can function as a stabilization feature and/or a cover for a ventilation hole, while permitting exhaust through the ventilation hole.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: February 16, 2021
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Nicholas Evan Barker, Steven Egge, Chad A. DeJong, Sujin Hwang, Massi Joe E. Kiani, Bilal Muhsin
  • Patent number: 10916882
    Abstract: A cable tether system includes a base member and at least one elongate member extending away from the base member. The elongate member is configured to surround at least a portion of a first cable. A second elongate member can be configured to surround at least a portion of a second cable. The base member can include one or more engagement portions that couple with one or more engagement portions on the first and second elongate members.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: February 9, 2021
    Assignee: MASIMO CORPORATION
    Inventors: Nicholas Evan Barker, Susan Denton, Eric Yang, Sujin Hwang
  • Publication number: 20200352525
    Abstract: A multi-parameter patient monitoring device rack can dock a plurality of patient monitor modules and can communicate with a separate display unit. A signal processing unit can be incorporated into the device rack. A graphics processing unit can be attached to the display unit. The device rack and the graphic display unit can have improved heat dissipation and drip-proof features. The multi-parameter patient monitoring device rack can provide interchangeability and versatility to a multi-parameter patient monitoring system by allowing use of different display units and monitoring of different combinations of parameters. A dual-use patient monitor module can have its own display unit configured for displaying one or more parameters when used as a stand-alone device, and can be docked into the device rack when a handle on the module is folded down.
    Type: Application
    Filed: April 23, 2020
    Publication date: November 12, 2020
    Inventors: Nicholas Evan Barker, Chad A. DeJong, Kirby Clark Dotson, Ammar Al-Ali, Bilal Muhsin, Sujin Hwang, Massi Joe E. Kiani
  • Publication number: 20200253474
    Abstract: A sensor system for monitoring patients is provided. The sensor system includes a wireless charging dock, one or more patient sensors, and a processing module. The patient sensor is configured to collect patient physiological data and send the data to the processing module. The processing module wirelessly transmits the patient physiological data to a patient monitor system. The wireless charging dock is wirelessly and removably coupled to the processing module to wirelessly provide power for the processing module. The wireless charging dock is magnetically coupled to the processing module.
    Type: Application
    Filed: December 17, 2019
    Publication date: August 13, 2020
    Inventors: Bilal Muhsin, Nicholas Evan Barker, Ammar Al-Ali
  • Patent number: 10667762
    Abstract: A multi-parameter patient monitoring device rack can dock a plurality of patient monitor modules and can communicate with a separate display unit. A signal processing unit can be incorporated into the device rack. A graphics processing unit can be attached to the display unit. The device rack and the graphic display unit can have improved heat dissipation and drip-proof features. The multi-parameter patient monitoring device rack can provide interchangeability and versatility to a multi-parameter patient monitoring system by allowing use of different display units and monitoring of different combinations of parameters. A dual-use patient monitor module can have its own display unit configured for displaying one or more parameters when used as a stand-alone device, and can be docked into the device rack when a handle on the module is folded down.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: June 2, 2020
    Assignee: Masimo Corporation
    Inventors: Nicholas Evan Barker, Chad A. DeJong, Kirby Clark Dotson, Ammar Al-Ali, Bilal Muhsin, Sujin Hwang, Massi Joe E. Kiani
  • Publication number: 20200113520
    Abstract: A band configured to apply a force to a physiological sensor on a portion of a user's body can include an elastic segment, a first indicator, and a second indicator. The elastic segment can have a first end and a second end opposite the first end, and a first portion of the elastic segment can be secured to a second portion of the elastic segment to form a closed loop that can at least partially secure the physiological sensor to the portion of the user's body when in use. The first and second indicators can be spaced apart from one another and positioned along the elastic segment. The first indicator can be positioned closer to the first end than the second indicator. A relative distance between the first and second indicators can provide an indication of a desired stretch of the elastic segment.
    Type: Application
    Filed: October 14, 2019
    Publication date: April 16, 2020
    Inventors: Yassir Kamel Abdul-Hafiz, Stephen Scruggs, Chad A. DeJong, Nicholas Evan Barker, Kyla Yoland Scott
  • Publication number: 20200000415
    Abstract: A multi-parameter patient monitoring device rack can dock a plurality of patient monitor modules and can communicate with a separate display unit. A signal processing unit can be incorporated into the device rack. A graphics processing unit can be attached to the display unit. The device rack and the graphic display unit can have improved heat dissipation and drip-proof features. The multi-parameter patient monitoring device rack can provide interchangeability and versatility to a multi-parameter patient monitoring system by allowing use of different display units and monitoring of different combinations of parameters. A dual-use patient monitor module can have its own display unit configured for displaying one or more parameters when used as a stand-alone device, and can be docked into the device rack when a handle on the module is folded down.
    Type: Application
    Filed: May 10, 2019
    Publication date: January 2, 2020
    Inventors: Nicholas Evan Barker, Chad A. DeJong, Kirby Clark Dotson, Ammar Al-Ali, Bilal Muhsin, Sujin Hwang, Massi Joe E. Kiani
  • Publication number: 20190325722
    Abstract: A modular patient monitor provides a multipurpose, scalable solution for various patient monitoring applications. In an embodiment, a modular patient monitor utilizes multiple wavelength optical sensor and/or acoustic sensor technologies to provide blood constituent monitoring and acoustic respiration monitoring (ARM) at its core, including pulse oximetry parameters and additional blood parameter measurements such as carboxyhemoglobin (HbCO) and methemoglobin (HbMet). Expansion modules provide blood pressure BP, blood glucose, ECG, CO2, depth of sedation and cerebral oximetry to name a few. Aspects of the present disclosure also include a transport dock for providing enhanced portability and functionally to handheld monitors. In an embodiment, the transport dock provides one or more docking interfaces for placing monitoring components in communication with other monitoring components. In an embodiment, the transport dock attaches to the modular patient monitor.
    Type: Application
    Filed: June 5, 2019
    Publication date: October 24, 2019
    Inventors: Massi Joe E. Kiani, Ammar Al-Ali, Michael O'Reilly, Paul Ronald Jansen, Nicholas Evan Barker, Anand Sampath
  • Patent number: 10354504
    Abstract: A modular patient monitor provides a multipurpose, scalable solution for various patient monitoring applications. In an embodiment, a modular patient monitor utilizes multiple wavelength optical sensor and/or acoustic sensor technologies to provide blood constituent monitoring and acoustic respiration monitoring (ARM) at its core, including pulse oximetry parameters and additional blood parameter measurements such as carboxyhemoglobin (HbCO) and methemoglobin (HbMet). Expansion modules provide blood pressure BP, blood glucose, ECG, CO2, depth of sedation and cerebral oximetry to name a few. Aspects of the present disclosure also include a transport dock for providing enhanced portability and functionally to handheld monitors. In an embodiment, the transport dock provides one or more docking interfaces for placing monitoring components in communication with other monitoring components. In an embodiment, the transport dock attaches to the modular patient monitor.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: July 16, 2019
    Assignee: MASIMO CORPORATION
    Inventors: Massi Joe E. Kiani, Ammar Al-Ali, Michael O'Reilly, Paul Ronald Jansen, Nicholas Evan Barker, Anand Sampath
  • Patent number: 10327713
    Abstract: A multi-parameter patient monitoring device rack can dock a plurality of patient monitor modules and can communicate with a separate display unit. A signal processing unit can be incorporated into the device rack. A graphics processing unit can be attached to the display unit. The device rack and the graphic display unit can have improved heat dissipation and drip-proof features. The multi-parameter patient monitoring device rack can provide interchangeability and versatility to a multi-parameter patient monitoring system by allowing use of different display units and monitoring of different combinations of parameters. A dual-use patient monitor module can have its own display unit configured for displaying one or more parameters when used as a stand-alone device, and can be docked into the device rack when a handle on the module is folded down.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: June 25, 2019
    Assignee: Masimo Corporation
    Inventors: Nicholas Evan Barker, Chad A. DeJong, Kirby Clark Dotson, Ammar Al-Ali, Bilal Muhsin, Sujin Hwang, Massi Joe E. Kiani
  • Patent number: D835282
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: December 4, 2018
    Assignee: Masimo Corporation
    Inventors: Nicholas Evan Barker, Ammar Al-Ali, Chad A. DeJong, Sujin Hwang, Massi Joe E. Kiani, Bilal Muhsin