Patents by Inventor Nicholas James Smith

Nicholas James Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170115700
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 9557773
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: January 31, 2017
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20160340226
    Abstract: Embodiments of a glass substrate including an alkali-containing bulk and an alkali-depleted surface layer, including a substantially homogenous composition are disclosed. In some embodiments, the alkali-depleted surface layer includes about 0.5 atomic % alkali or less. The alkali-depleted surface layer may be substantially free of hydrogen and/or crystallites. Methods for forming a glass substrate with a modified surface layer are also provided.
    Type: Application
    Filed: May 16, 2016
    Publication date: November 24, 2016
    Inventors: Indrajit Dutta, Nicholas James Smith
  • Publication number: 20160313494
    Abstract: A substrate with a textured surface is disclosed. The substrate may be, for example, a light emitter comprising a light guide, for example a backlight element for use in a display device, wherein a surface of the light guide, for example a glass substrate, is configured to have a textured surface with a predetermined RMS roughness and a predetermined correlation length of the texture. A plurality of light scatter supressing features can be provided on the textured surface. Textured surfaces disclosed herein may be effective to reduce electrostatic charging of the substrate surface. Methods of producing the textured surface are also disclosed.
    Type: Application
    Filed: December 17, 2014
    Publication date: October 27, 2016
    Inventors: James Patrick Hamilton, Karl William Koch, Aize Li, Jonathan Michael Mis, Daniel Aloysius Nolan, Vasudha Ravichandran, Ioannis Georgios Roudas, Nicholas James Smith, Christine Coulter Wolcott, Ruchirej Yongsunthon
  • Publication number: 20160224069
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: March 16, 2016
    Publication date: August 4, 2016
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20160159684
    Abstract: A thermo-electric method for texturing a glass surface including, for example, simultaneously heating a glass substrate to a temperature less than its glass transition temperature and applying a bias across the glass substrate using a template electrode. The applied bias at the processing temperature induces localized ion migration within the glass, which results in the formation in the glass surface of a negative topographical image of the pattern formed in the electrode.
    Type: Application
    Filed: February 16, 2016
    Publication date: June 9, 2016
    Inventor: Nicholas James Smith
  • Patent number: 9321678
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: April 26, 2016
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith
  • Patent number: 9321677
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, with the center of curvature on the side of the second primary surface so as to induce a bending stress ?B at the first primary surface, ?I+?B<0. Still further, the glass element has a puncture resistance of ?1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: April 26, 2016
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Michael Patrick Donovan, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Gautam Narendra Kudva, Nicholas James Smith
  • Patent number: 9321679
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is held at a bend radius from about 1 mm to about 20 mm for at least 60 minutes at about 25° C. and about 50% relative humidity. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: April 26, 2016
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith
  • Patent number: 9272945
    Abstract: A thermo-electric method for texturing a glass surface including, for example, simultaneously heating a glass substrate to a temperature less than its glass transition temperature and applying a bias across the glass substrate using a template electrode. The applied bias at the processing temperature induces localized ion migration within the glass, which results in the formation in the glass surface of a negative topographical image of the pattern formed in the electrode.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: March 1, 2016
    Assignee: Corning Incorporated
    Inventor: Nicholas James Smith
  • Publication number: 20150210590
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is held at a bend radius from about 1 mm to about 20 mm for at least 60 minutes at about 25° C. and about 50% relative humidity. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 30, 2015
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20150210589
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 30, 2015
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20150210588
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, with the center of curvature on the side of the second primary surface so as to induce a bending stress ?B at the first primary surface, ?I+?B<0. Still further, the glass element has a puncture resistance of ?1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: January 21, 2015
    Publication date: July 30, 2015
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Michael Patrick Donovan, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Gautam Narendra Kudva, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20150002368
    Abstract: An modular reflector assembly may include a shell and a support frame. The modular reflector assembly may also include a plurality of support links that mechanically couple the shell to the support frame. The shell may be thermally decoupled from the support frame by the plurality of support links.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Jerry Douglas Macfarlane, Joel Mendoza, Ray Amoranto, Brian E. Park, Nicholas James Smith, Mark E. Ankrom, Jeffrey Wallace, David B. Robinson
  • Publication number: 20140131091
    Abstract: A scratch-resistant glass substrate is prepared by forming a phase-transformable, scratch-resistant layer over a major surface of the substrate. The phase-transformable layer can comprise the metastable, tetragonal polymorph of zirconium oxide. Under the application of an applied scratch, such as during a scratch event, the tetragonal phase can undergo a phase-transformation and concomitant volume expansion to the monoclinic phase. The volume expansion can reduce and soften the physical dimensions of the scratch, which can make the scratch less visible.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Inventor: Nicholas James Smith
  • Publication number: 20140120311
    Abstract: A thermo-electric method for texturing a glass surface including, for example, simultaneously heating a glass substrate to a temperature less than its glass transition temperature and applying a bias across the glass substrate using a template electrode. The applied bias at the processing temperature induces localized ion migration within the glass, which results in the formation in the glass surface of a negative topographical image of the pattern formed in the electrode.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Inventor: Nicholas James Smith