Patents by Inventor Nicholas R. White

Nicholas R. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9711318
    Abstract: The invention is a unique and substantive improvement in ion source assemblies which is able to produce a ribbon-shaped ion beam having an arbitrarily chosen breadth dimension which is at least ten times greater [and often more than thirty times greater] than its thickness dimension, the breadth and thickness dimensions of the beam being normal (i.e., perpendicular) to the Z-axis direction of travel for the ion beam.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 18, 2017
    Inventor: Nicholas R. White
  • Publication number: 20170110282
    Abstract: The invention is a unique and substantive improvement in ion source assemblies which is able to produce a ribbon-shaped ion beam having an arbitrarily chosen breadth dimension which is at least ten times greater [and often more than thirty times greater] than its thickness dimension, the breadth and thickness dimensions of the beam being normal (i.e., perpendicular) to the Z-axis direction of travel for the ion beam.
    Type: Application
    Filed: November 26, 2014
    Publication date: April 20, 2017
    Inventor: Nicholas R. White
  • Patent number: 9281162
    Abstract: A single bend energy filter for controlling deflection of a charged particle beam is provided. It includes a first array of electrodes and a second array of electrodes to define a beam channel for the charged particle beam to pass through; an unmatched steering electrode among the first array of electrodes for tuning the bend angle of the charged particle beam; and a plurality of electrical biases applied to the first array of electrodes, the second array of electrodes and the unmatched steering electrode, wherein portion or all of the electrodes have different shapes. A method for controlling deflection of a charged particle beam is also provided. Depending on use of an unmatched steering electrode, the bend angle of the charged particle beam may be fine-tuned, so as to effectively control the deflection of the charged particle beam to achieve a centered beam at the wafer plane.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 8, 2016
    Assignee: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Nicholas R. White, Kourosh Saadatmand
  • Publication number: 20150380206
    Abstract: A single bend energy filter for controlling deflection of a charged particle beam is provided. It includes a first array of electrodes and a second array of electrodes to define a beam channel for the charged particle beam to pass through; an unmatched steering electrode among the first array of electrodes for tuning the bend angle of the charged particle beam; and a plurality of electrical biases applied to the first array of electrodes, the second array of electrodes and the unmatched steering electrode, wherein portion or all of the electrodes have different shapes. A method for controlling deflection of a charged particle beam is also provided. Depending on use of an unmatched steering electrode, the bend angle of the charged particle beam may be fine-tuned, so as to effectively control the deflection of the charged particle beam to achieve a centered beam at the wafer plane.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Inventors: Nicholas R. WHITE, Kourosh SAADATMAND
  • Patent number: 8921802
    Abstract: The present invention is an apparatus and multi-unit assembly which is able to achieve two different and highly desirable functions: A focusing of a charged particle beam; and a mass separation of desired ion species from unwanted ion species in traveling ion beams. The apparatus is a simply organized and easily manufactured article; is relatively light-weight and less expensive to make; and is easier to install, align, and operate than conventionally available devices.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: December 30, 2014
    Inventor: Nicholas R. White
  • Publication number: 20120235053
    Abstract: The present invention is an apparatus and multi-unit assembly which is able to achieve two different and highly desirable functions: A focusing of a charged particle beam; and a mass separation of desired ion species from unwanted ion species in traveling ion beams. The apparatus is a simply organized and easily manufactured article; is relatively light-weight and less expensive to make; and is easier to install, align, and operate than conventionally available devices.
    Type: Application
    Filed: February 27, 2012
    Publication date: September 20, 2012
    Inventor: Nicholas R. White
  • Patent number: 8035087
    Abstract: The present invention is an electromagnetic controller assembly for use in ion implantation apparatus, and provides a structural construct and methodology which can be employed for three recognizably separate and distinct functions: (i) To adjust the trajectory of charged particles carried within any type of traveling ion beam which is targeted at a plane of implantation or a work surface for the placement of charged ions into a prepared workpiece (such as a silicon wafer or flat glass panel); (ii) concurrently, to alter and change the degree of parallelism of the ions in the traveling beam; and (iii) concurrently, to control the uniformity of the current density along the transverse direction of traveling ion beams, regardless of whether the beams are high-aspect, continuous ribbon ion beams or alternatively are scanned ribbon ion beams.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: October 11, 2011
    Inventor: Nicholas R. White
  • Patent number: 7902527
    Abstract: An ion implantation apparatus with multiple operating modes is disclosed. The ion implantation apparatus has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. A two-path beamline in which a second path incorporates a deceleration or acceleration system incorporating energy filtering is disclosed. Finally, methods of ion implantation are disclosed in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: March 8, 2011
    Inventors: Jiong Chen, Nicholas R. White
  • Patent number: 7740247
    Abstract: The present invention is a compound sliding seal unit of markedly reduced size and height dimensions which is employed as a discrete assembly for both the passage across and the at-will height adjustment of a mounted, rotatable shaft which extends from the atmospheric environment portion into the vacuum environmental portion of an ion implanter apparatus. The extended, rotatable shaft is typically fashioned as either a rotatable hollow tube or conduit (suitable for the passage of electrical components) and/or as a rotatable support suitable for the mounting of a pivotal scanning radial arm translation system. The manner of construction and the substantially reduced height dimensions of the compound sliding seal unit permits on-demand changes of height for the mounted, rotatable shaft which extends from the atmospheric environment and extends through the compound unit into the confined and limited spatial volume of a vacuum environment within a conventional ion implantation apparatus.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: June 22, 2010
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Richard F. McRay, Nicholas R. White
  • Publication number: 20100001204
    Abstract: The present invention is an electromagnetic controller assembly for use in ion implantation apparatus, and provides a structural construct and methodology which can be employed for three recognizably separate and distinct functions: (i) To adjust the trajectory of charged particles carried within any type of traveling ion beam which is targeted at a plane of implantation or a work surface for the placement of charged ions into a prepared workpiece (such as a silicon wafer or flat glass panel); (ii) concurrently, to alter and change the degree of parallelism of the ions in the traveling beam; and (iii) concurrently, to control the uniformity of the current density along the transverse direction of traveling ion beams, regardless of whether the beams are high-aspect, continuous ribbon ion beams or alternatively are scanned ribbon ion beams.
    Type: Application
    Filed: September 4, 2009
    Publication date: January 7, 2010
    Inventor: Nicholas R. White
  • Publication number: 20090189096
    Abstract: An ion implantation apparatus with multiple operating modes is disclosed. The ion implantation apparatus has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. A two-path beamline in which a second path incorporates a deceleration or acceleration system incorporating energy filtering is disclosed. Finally, methods of ion implantation are disclosed in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning.
    Type: Application
    Filed: August 19, 2008
    Publication date: July 30, 2009
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Jiong CHEN, Nicholas R. White
  • Publication number: 20090066031
    Abstract: The present invention is a compound sliding seal unit of markedly reduced size and height dimensions which is employed as a discrete assembly for both the passage across and the at-will height adjustment of a mounted, rotatable shaft which extends from the atmospheric environment portion into the vacuum environmental portion of an ion implanter apparatus. The extended, rotatable shaft is typically fashioned as either a rotatable hollow tube or conduit (suitable for the passage of electrical components) and/or as a rotatable support suitable for the mounting of a pivotal scanning radial arm translation system. The manner of construction and the substantially reduced height dimensions of the compound sliding seal unit permits on-demand changes of height for the mounted, rotatable shaft which extends from the atmospheric environment and extends through the compound unit into the confined and limited spatial volume of a vacuum environment within a conventional ion implantation apparatus.
    Type: Application
    Filed: November 10, 2008
    Publication date: March 12, 2009
    Inventors: Richard F. McRay, Nicholas R. White
  • Patent number: 7462843
    Abstract: This invention discloses an ion implantation apparatus with multiple operating modes. It has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. The invention further discloses a two-path beamline in which a second path incorporates a deceleration system incorporating energy filtering. The invention discloses methods of ion implantation in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning, and from a simple path to an s-shaped path with deceleration.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: December 9, 2008
    Assignee: Advanced ION Bean Technology Inc.
    Inventors: Jiong Chen, Nicholas R. White
  • Patent number: 7326941
    Abstract: This invention discloses an ion implantation apparatus with multiple operating modes. It has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. The invention further discloses a two-path beamline in which a second path incorporates a deceleration system incorporating energy filtering. The invention discloses methods of ion implantation in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning, and from a simple path to an s-shaped path with deceleration.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: February 5, 2008
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Jiong Chen, Nicholas R. White
  • Patent number: 7112789
    Abstract: The present invention provides a windowframe magnet having an aligned array of paired bedstead coils in mirror symmetry can bend a high aspect ratio ribbon ion beam through angle of not less than about 45 degrees and not more than about 110 degrees, and can focus it through a resolving slot for mass analysis. The long transverse axis of the beam, which can exceed 50% of the bend radius, is aligned with the generated magnetic field. The array of paired bedstead coils provide tight control of the fringing fields, present intrinsically good field uniformity, and enable a manufacture of much lighter construction than other magnet styles conventionally in use in the ion implantation industry. Within the system of the present invention, the ribbon beam is refocused with low aberration to achieve high resolving power, which is of significant value in the ion implantation industry. System size is further reduced by using a small ion source and a quadrupole lens to collimate the beam after expansion and analysis.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: September 26, 2006
    Inventors: Nicholas R. White, Jiong Chen
  • Patent number: 7105839
    Abstract: In system for implanting workpieces with an accurately parallel scanned ion beam, a fine-control collimator construct is used to reduce the deviation of the scanned ion beam from a specified axis of parallelism and thereby improve its collimation. The shape of the fine-control collimator matches the ribbon shape of the beam and correction of parallelism in two orthogonal directions is possible. Measurement of the non-parallelism is accomplished by sampling the scanned beam in two planes and comparing timing information; and such measurement is calibrated to the orientation of the workpiece in the plane where ion implantation occurs. Measurement of non-uniformity in the doping profile is accomplished using the same means; and the scan waveform is adjusted to substantially remove any non-uniformity in the doping profile.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: September 12, 2006
    Inventor: Nicholas R. White
  • Patent number: 7078713
    Abstract: An electromagnetic regulator assembly for the production of contiguous magnetic fields which are applied to a continuous ion beam is described. The assembly is structured for controlling the uniformity of traveling continuous ribbon-shaped beams; and allows for direct adjustment of the magnetic field gradient of the magnetic field as the parameter for increasing the current uniformity.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: July 18, 2006
    Inventor: Nicholas R. White
  • Patent number: 7059817
    Abstract: A high-speed wafer-processing apparatus and method that employs a vacuum chamber having at least two wafer transport robots and a process station. The vacuum chamber interfaces with a number of single-wafer load locks that are loaded and unloaded one wafer at a time by a robot in atmosphere. Four load locks are sized to allow for a gentle vacuum cycling of each wafer without significant pumpdown delays. The robots in the vacuum chamber move wafers sequentially from one of the load locks to a process station for processing and then to another one of the load locks for unloading by the atmospheric robot.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: June 13, 2006
    Assignee: Axcelis Technologies, Inc.
    Inventors: Manny Sieradzki, Nicholas R. White
  • Patent number: 7057192
    Abstract: Semiconductor wafers are sequentially mounted on a holder at one end of an arm which is pivoted about its other end. Each wafer is thereby passed on an arcuate path through a parallel-scanned or continuous ribbon-shaped beam for processing. The pivot axis is parallel to the centroid of the beam trajectories. By pre-orienting the wafers before loading, and by providing a second pivot between the arm and the holder, the angle between the beam and the wafer surface may be precisely adjusted to any arbitrary angle of interest. The geometry is such that this angle is constant over the processed area. Uniform processing requires a scanned ribbon beam to have a non-uniform scan velocity and a continuous ribbon beam to have a non-uniform intensity profile. The required non-uniformity is generated by a suitably shaped collimating magnet.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: June 6, 2006
    Inventors: Robert E. Kaim, Nicholas R. White
  • Patent number: 6998625
    Abstract: An ion implanter includes an ion source for generating an ion beam, an analyzer for separating unwanted components from the ion beam, a first beam transport device for transporting the ion beam through the analyzer at a first transport energy, a first deceleration stage positioned downstream of the analyzer for decelerating the ion beam from the first transport energy to a second transport energy, a beam filter positioned downstream of the first deceleration stage for separating neutral particles from the ion beam, a second beam transport device for transporting the ion beam through the beam filter at the second transport energy, a second deceleration stage positioned downstream of the beam filter for decelerating the ion beam from the second transport energy to a final energy, and a target site for supporting a target for ion implantation. The ion beam is delivered to the target site at the final energy.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: February 14, 2006
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Charles M. McKenna, Nicholas R. White, Douglas A. Brown, Edward Bell, Svetlana Radovanov