Patents by Inventor Nigel Cave

Nigel Cave has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060105479
    Abstract: A method for integrating an optical device and an electronic device on a semiconductor substrate comprises forming openings within an active semiconductor layer in a first region of the semiconductor substrate, wherein the first region corresponds to an electronic device portion and the second region corresponds to an optical device portion. A semiconductor layer is epitaxially grown overlying an exposed active semiconductor layer in the second region, the epitaxially grown semiconductor layer corresponding to an optical device region. At least a portion of an electronic device is formed on the active semiconductor layer within the electronic device portion of the semiconductor substrate. The method further includes forming openings within the epitaxially grown semiconductor layer of the optical device portion of the semiconductor substrate, wherein the openings define one or more features of an optical device.
    Type: Application
    Filed: November 15, 2004
    Publication date: May 18, 2006
    Inventors: Nigel Cave, Omar Zia
  • Publication number: 20060105488
    Abstract: A semiconductor structure has a waveguide a transistor on the same integrated circuit. One trench isolation technique is used for defining a transistor region and another is used for optimizing a lateral boundary of the waveguide. Both the waveguide and the transistor have trenches with liners that can be separately optimized. The transistor has a salicide for source/drain contacts. During this process, a salicide block is used over the waveguide to prevent salicide formation in unwanted areas of the waveguide. The depth of the trench for the waveguide can be lower than that of the trench for the transistor isolation. Trench isolation depth can be set by an etch stop region that can be either a thin oxide layer or a buffer layer that is selectively etchable with respect to the top semiconductor layer and that can be used as a seed layer for growing the top semiconductor layer.
    Type: Application
    Filed: November 15, 2004
    Publication date: May 18, 2006
    Inventors: Omar Zia, Nigel Cave, Lawrence Gunn
  • Publication number: 20060024893
    Abstract: In one embodiment, a method for forming a semiconductor device is described. A semiconductor substrate has a first portion and a second portion. A first dielectric layer formed over the first portion of the semiconductor substrate and a second dielectric layer is formed over the second portion of the semiconductor substrate. A cap that may include silicon, such as polysilicon, is formed over the first dielectric layer. A first electrode layer is formed over the cap and a second electrode layer is formed over the second dielectric.
    Type: Application
    Filed: July 29, 2004
    Publication date: February 2, 2006
    Inventors: Byoung Min, Nigel Cave, Venkat Kolagunta, Omar Zia, Sinan Goktepeli
  • Publication number: 20050112829
    Abstract: In a semiconductor device, a relatively deep germanium implant and activation thereof precedes deposition of the nickel for nickel silicide formation. The activation of the germanium causes the lattice constant in the region of the implant to be increased over the lattice constant of the background substrate, which is preferably silicon. The effect is that the lattice so altered avoids formation of nickel disilicide. The result is that the nickel silicide spiking is avoided.
    Type: Application
    Filed: November 21, 2003
    Publication date: May 26, 2005
    Inventors: Dharmesh Jawarani, Nigel Cave, Michael Rendon
  • Patent number: 6475841
    Abstract: A transistor structure includes a retrograde gate structure (112) that is narrower at the end that interfaces with the gate dielectric (120) than it is at the opposite end and method for manufacture of such a structure. The retrograde gate structure (112) is formed by depositing a layer of gate material (104) that has varying composition in the vertical direction. The differentiation in composition causes varying lateral etch rate characteristics along the vertical direction of the gate structure (112) such that increased etching of the gate material (104) occurs near the interface with the gate dielectric layer (102).
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: November 5, 2002
    Assignee: Motorola, Inc.
    Inventors: William J. Taylor, Jr., Srikanth B. Samavedam, Nigel Cave