Patents by Inventor Nigel P. Smith

Nigel P. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220326626
    Abstract: Overlay is determined for a device using signals measured from the device and a signal response to overlay determined from a plurality of calibration targets. Each calibration target has the same design as the device, but includes a known overlay shift. The calibration targets may be located in a scribe line, within a product area on the wafer, or on a separate calibration wafer. Each calibration target may have a different overlay shift, including zero overlay shift. The device may serve as a calibration target with zero overlay shift. The overlay shift may be in two orthogonal directions. The signal response to overlay may be determined based on a set of signals obtained from the calibration targets. A second set of signals may then be obtained from the device and the overlay determined based on the second set of signals and the determined signal response to overlay.
    Type: Application
    Filed: March 29, 2022
    Publication date: October 13, 2022
    Inventors: Nigel P. SMITH, Francis Scott HOOVER, Nicholas James KELLER, Kevin Eduard Heidrich
  • Patent number: 11150195
    Abstract: Defects are detected using data acquired from an interference channel and a polarization modification channel in an interferometer. The interference objective splits a polarized illumination beam into a reference illumination that is reflected by a reference surface without modification to the polarization, and a sample beam that is reflected by a sample surface, that may modify the polarization. Light from the sample beam with no change in polarization is combined with the reference illumination and directed to the interference channel, which may measure the reflectivity and/or topography of the sample. Light from the sample beam with modified polarization is directed to the polarization modification channel. The intensity of the light detected at the polarization modification channel may be used, along with the reflectivity and topography data to identify defects or other characteristics of the sample.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: October 19, 2021
    Assignee: Onto Innovation Inc.
    Inventor: Nigel P. Smith
  • Publication number: 20210088453
    Abstract: Defects are detected using data acquired from an interference channel and a polarization modification channel in an interferometer. The interference objective splits a polarized illumination beam into a reference illumination that is reflected by a reference surface without modification to the polarization, and a sample beam that is reflected by a sample surface, that may modify the polarization. Light from the sample beam with no change in polarization is combined with the reference illumination and directed to the interference channel, which may measure the reflectivity and/or topography of the sample. Light from the sample beam with modified polarization is directed to the polarization modification channel. The intensity of the light detected at the polarization modification channel may be used, along with the reflectivity and topography data to identify defects or other characteristics of the sample.
    Type: Application
    Filed: July 13, 2020
    Publication date: March 25, 2021
    Inventor: Nigel P. SMITH
  • Patent number: 10935501
    Abstract: An optical metrology device, such as an interferometer, detects sub-resolution defects on a sample, i.e., defects that are smaller than a pixel in the detector array of the interferometer. The optical metrology device obtains optical metrology data at each pixel in at least one detector array and determines parameter values of a signal model for a pixel of interest using the optical metrology data received by a plurality of pixels neighboring a pixel of interest. A residual for the pixel of interest is determined using the optical metrology data received by the pixel of interest and determined parameter values for the signal model for the pixel of interest. A defect, which may be smaller than the pixel of interest can then be detected based on the residual for the pixel of interest.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: March 2, 2021
    Assignee: Onto Innovation Inc.
    Inventor: Nigel P. Smith
  • Patent number: 10937705
    Abstract: Defects are detected using surface topography data. The defects may be detected by determining topography characteristics within a region of interest on a sample, and the same topography characteristics of at least one reference surface. By comparing the topography characteristics in the region of interest for the sample and reference surface, common pattern structures may be removed, leaving only variations, which may be used to identify the presence of defects. For example, thresholds may be used to identify variations in the topography characteristics as defect candidates. Defects may be identified based on, e.g., size, height, shape, texture, etc. of candidate defects. In some implementations, rather than using a reference surface, the topography characteristic of the surface within the region of interest may be inspected based on prior knowledge of a required surface topography for the region of interest to determine if a defect is present.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: March 2, 2021
    Assignee: Onto Innovation Inc.
    Inventors: Nigel P. Smith, Holly M. Edmundson, Michael A. Gilmore
  • Patent number: 10830709
    Abstract: An interferometer uses a phase shift mask that includes an array of pixels that are aligned with a corresponding array of pixels of a detector. Each pixel in the phase shift mask is adapted to produce one of a number of predetermined phase shifts between a test beam and a reference beam. For example, the pixels may be linear polarizers or phase delay elements having one of the number of polarizer orientations or phase delays to produce the predetermined phase shifts between the test beam and the reference beam. The pixels in the phase shift mask are arranged in the array to include each of the predetermined phase shifts in repeating pixel groups in rows that are one column wide, columns that are one row high, or blocks of multiple rows and columns.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: November 10, 2020
    Assignee: Onto Innovation Inc.
    Inventor: Nigel P. Smith
  • Publication number: 20200103355
    Abstract: An interferometer uses a phase shift mask that includes an array of pixels that are aligned with a corresponding array of pixels of a detector. Each pixel in the phase shift mask is adapted to produce one of a number of predetermined phase shifts between a test beam and a reference beam. For example, the pixels may be linear polarizers or phase delay elements having one of the number of polarizer orientations or phase delays to produce the predetermined phase shifts between the test beam and the reference beam. The pixels in the phase shift mask are arranged in the array to include each of the predetermined phase shifts in repeating pixel groups in rows that are one column wide, columns that are one row high, or blocks of multiple rows and columns.
    Type: Application
    Filed: November 21, 2018
    Publication date: April 2, 2020
    Inventor: Nigel P. SMITH
  • Publication number: 20190304851
    Abstract: Defects are detected using surface topography data. The defects may be detected by determining topography characteristics within a region of interest on a sample, and the same topography characteristics of at least one reference surface. By comparing the topography characteristics in the region of interest for the sample and reference surface, common pattern structures may be removed, leaving only variations, which may be used to identify the presence of defects. For example, thresholds may be used to identify variations in the topography characteristics as defect candidates. Defects may be identified based on, e.g., size, height, shape, texture, etc. of candidate defects. In some implementations, rather than using a reference surface, the topography characteristic of the surface within the region of interest may be inspected based on prior knowledge of a required surface topography for the region of interest to determine if a defect is present.
    Type: Application
    Filed: November 21, 2018
    Publication date: October 3, 2019
    Inventors: Nigel P. SMITH, Holly M. EDMUNDSON, Michael A. GILMORE
  • Publication number: 20190170655
    Abstract: An optical metrology device, such as an interferometer, detects sub-resolution defects on a sample, i.e., defects that are smaller than a pixel in the detector array of the interferometer. The optical metrology device obtains optical metrology data at each pixel in at least one detector array and determines parameter values of a signal model for a pixel of interest using the optical metrology data received by a plurality of pixels neighboring a pixel of interest. A residual for the pixel of interest is determined using the optical metrology data received by the pixel of interest and determined parameter values for the signal model for the pixel of interest. A defect, which may be smaller than the pixel of interest can then be detected based on the residual for the pixel of interest.
    Type: Application
    Filed: November 21, 2018
    Publication date: June 6, 2019
    Inventor: Nigel P. Smith
  • Patent number: 10288408
    Abstract: A white light interferometric metrology device operates in the image plane and objective pupil plane. The interferometric metrology device extracts the electric field with complex parameters and that is a function of azimuth angle, angle of incidence and wavelength from interferometric data obtained from the pupil plane. Characteristics of the sample are determined using the electric field based on an electric field model of the azimuth angle, the angle of incidence and the wavelength that is specific for a zero diffraction order. A center of the pupil in the pupil plane may be determined based on a Fourier transform of the interferometric data at each new measurement and used to convert each pixel from the camera imaging the objective pupil plane into a unique set of angle of incidence and azimuth angle of light incident on the sample.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 14, 2019
    Assignee: Nanometrics Incorporated
    Inventors: Nigel P. Smith, George Andrew Antonelli
  • Patent number: 10107621
    Abstract: An image based overlay measurement is performed using an overlay target that includes shifted overlying gratings. The overlay target is imaged and an asymmetry is measured in the image of the overlaid gratings. The asymmetry is used to determine the overlay error. For each measurement direction, the overlay target may include two or more overlay measurement pads with different offsets between the top and bottom gratings. The measured asymmetries and offsets in the overlay measurement pads may be used to determine the overlay error, e.g., using self-calibration. The pitch and critical dimensions of the overlay target may be optimized to produce a greatest change of symmetry with overlay error for a numerical aperture and wavelength of light used by the image based metrology device.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: October 23, 2018
    Assignee: Nanometrics Incorporated
    Inventor: Nigel P. Smith
  • Publication number: 20180156597
    Abstract: A white light interferometric metrology device operates in the image plane and objective pupil plane. The interferometric metrology device extracts the electric field with complex parameters and that is a function of azimuth angle, angle of incidence and wavelength from interferometric data obtained from the pupil plane. Characteristics of the sample are determined using the electric field based on an electric field model of the azimuth angle, the angle of incidence and the wavelength that is specific for a zero diffraction order. A center of the pupil in the pupil plane may be determined based on a Fourier transform of the interferometric data at each new measurement and used to convert each pixel from the camera imaging the objective pupil plane into a unique set of angle of incidence and azimuth angle of light incident on the sample.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 7, 2018
    Inventors: Nigel P. Smith, George Andrew Antonelli
  • Patent number: 9239523
    Abstract: An empirical diffraction based overlay (eDBO) measurement of an overlay error is produced using diffraction signals from a plurality of diffraction based alignment pads from an alignment target. The linearity of the overlay error is tested using the same diffraction signals or a different set of diffraction signals from diffraction based alignment pads. Wavelengths that do not have a linear response to overlay error may be excluded from the measurement error.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 19, 2016
    Assignee: Nanometrics Incorporated
    Inventors: Jie Li, Zhuan Liu, Silvio J. Rabello, Nigel P. Smith
  • Patent number: 8674744
    Abstract: An electronic device comprising a level shifter and a method. The level shifter includes an input adapted to receive an input signal switching between a low input voltage level and a high input voltage level and a first switch and a second switch coupled in series between a low output voltage supply and a high output voltage supply. An output is coupled to an interconnection node between the first and the second switch and is adapted to be coupled to a load. The first and second switches are controlled by the input signal. The level shifter further includes a third switch which is coupled between the interconnection node and an auxiliary voltage supply which has a voltage level between the low output voltage level and the high output voltage level.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: March 18, 2014
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Nigel P. Smith, Byoung-Suk Kim, Stefan Reithmaier
  • Publication number: 20130113540
    Abstract: An electronic device comprising a level shifter and a method. The level shifter includes an input adapted to receive an input signal switching between a low input voltage level and a high input voltage level and a first switch and a second switch coupled in series between a low output voltage supply and a high output voltage supply. An output is coupled to an interconnection node between the first and the second switch and is adapted to be coupled to a load. The first and second switches are controlled by the input signal. The level shifter further includes a third switch which is coupled between the interconnection node and an auxiliary voltage supply which has a voltage level between the low output voltage level and the high output voltage level.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 9, 2013
    Applicant: TEXAS INSTRUMENTS DEUTSCHLAND GMBH
    Inventors: Nigel P. Smith, Byoung-Suk Kim, Stefan Reithmaier
  • Patent number: 8390556
    Abstract: A level shifter for use in LCD display applications is provided which includes a group of separate channels each with a signal input and a signal output and with channel control circuitry supporting gate voltage shaping for improving image quality. The level shifter further has a number of flicker clock inputs. The channel control circuitry of each particular channel in the group comprises logic circuitry combining all of said flicker clock inputs with the signal input of the particular channel and signal inputs form other channels into a gate voltage shaping enable signal for the control circuitry of the particular channel. With this configuration it is possible to use the same level shifter IC with only one flicker clock signal for all phases, regardless of how many, without the need for an additional synchronization signal, or multiple flicker clock signals as is conventional.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: March 5, 2013
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Nigel P. Smith, Byoung-Suk Kim, Stefan Reithmaier
  • Patent number: 8339605
    Abstract: A target system for determining positioning error between lithographically produced integrated circuit fields on at least one lithographic level. The target system includes a first target pattern on a lithographic field containing an integrated circuit pattern, with the first target pattern comprising a plurality of sub-patterns symmetric about a first target pattern center and at a same first distance from the first target pattern center. The target system also includes a second target pattern on a different lithographic field, with the second target pattern comprising a plurality of sub-patterns symmetric about a second target pattern center and at a same second distance from the second target pattern center. The second target pattern center is intended to be at the same location as the first target pattern center. The centers of the first and second target patterns may be determined and compared to determine positioning error between the lithographic fields.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 25, 2012
    Assignees: International Business Machines Corporation, Nanometrics Incorporated
    Inventors: Christopher P. Ausschnitt, Lewis A. Binns, Jaime D. Morillo, Nigel P. Smith
  • Patent number: 8107079
    Abstract: A target system for determining positioning error between lithographically produced integrated circuit fields on at least one lithographic level. The target system includes a first target pattern on a lithographic field containing an integrated circuit pattern, with the first target pattern comprising a plurality of sub-patterns symmetric about a first target pattern center and at a same first distance from the first target pattern center. The target system also includes a second target pattern on a different lithographic field, with the second target pattern comprising a plurality of sub-patterns symmetric about a second target pattern center and at a same second distance from the second target pattern center. The second target pattern center is intended to be at the same location as the first target pattern center. The centers of the first and second target patterns may be determined and compared to determine positioning error between the lithographic fields.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: January 31, 2012
    Assignees: International Business Machines Corporation, Nanometrics Incorporated
    Inventors: Christopher P. Ausschnitt, Lewis A. Binns, Jaime D. Morillo, Nigel P. Smith
  • Publication number: 20110238365
    Abstract: An empirical diffraction based overlay (eDBO) measurement of an overlay error is produced using diffraction signals from a plurality of diffraction based alignment pads from an alignment target. The linearity of the overlay error is tested using the same diffraction signals or a different set of diffraction signals from diffraction based alignment pads. Wavelengths that do not have a linear response to overlay error may be excluded from the measurement error.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 29, 2011
    Applicant: NANOMETRICS INCORPORATED
    Inventors: Jie Li, Zhuan Liu, Silvio J. Rabello, Nigel P. Smith
  • Publication number: 20110193839
    Abstract: A level shifter for use in LCD display applications is provided which includes a group of separate channels each with a signal input and a signal output and with channel control circuitry supporting gate voltage shaping for improving image quality. The level shifter further has a number of flicker clock inputs. The channel control circuitry of each particular channel in the group comprises logic circuitry combining all of said flicker clock inputs with the signal input of the particular channel and signal inputs form other channels into a gate voltage shaping enable signal for the control circuitry of the particular channel. With this configuration it is possible to use the same level shifter IC with only one flicker clock signal for all phases, regardless of how many, without the need for an additional synchronization signal, or multiple flicker clock signals as is conventional.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 11, 2011
    Applicant: Texas Instruments Deutschland GmbH
    Inventors: Nigel P. Smith, Byoung-Suk Kim, Stefan Reithmaier