Patents by Inventor Nikhil Ravi

Nikhil Ravi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10447054
    Abstract: A battery management system comprising a processor and a memory storing instructions that, when executed by the processor, cause the battery management system to estimate one or more states of the battery by applying a battery model to account for physical parameters of a chemical composition of the battery based on one or more measured characteristics of the battery and the one or more estimated characteristics of the battery and regulate a first charging mode of the battery based on the estimation of the one or more states of the one or more battery cells and switch between the first charging mode and a second charging mode based on the estimation of the one or more states of the battery to allow for rapid charging of the battery.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: October 15, 2019
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Patent number: 10389151
    Abstract: A method for charging a battery comprises: measuring a battery voltage with a voltage sensor and a battery current with a current sensor; applying, with a charging circuit, a first charging current to the battery until the measured battery voltage exceeds a predetermined voltage threshold, a magnitude of the first charging current being held at a first constant value; applying, with the charging circuit, in response to the measured battery voltage exceeding the predetermined voltage threshold, a second charging current to the battery until a cutoff criterion is satisfied, a magnitude of the second charging current being such that the battery voltage exceeds a steady state voltage limit for the battery; after the cutoff criterion is satisfied, determining a rest voltage of the battery; and updating the cutoff criterion based on a difference between the determined rest voltage and a target rest voltage.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: August 20, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Nikhil Ravi, Anantharaman Subbaraman, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Gerd Simon Schmidt, Christoph Klee
  • Patent number: 10312699
    Abstract: A method for monitoring a battery while the battery is connected to a load has been developed. The method includes measuring a first current level flowing through the battery to the load and a first voltage level of the battery at a first time, generating an estimated open cell voltage (OCV) of the battery at the first time based on the first current level, the first voltage level, and a predetermined model of the battery, identifying a first excitation level of the battery at the first time based on the first voltage level, the first current level and a cost optimization process, and identifying at least one of a state of charge (SoC) and state of health (SoH) of the battery using the estimated OCV only in response to the first excitation level being below a predetermined threshold.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: June 4, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Anantharaman Subbaraman, Nikhil Ravi, Reinhardt Klein, Gerd Simon Schmidt, Christopher Mayhew
  • Patent number: 10291046
    Abstract: A method for charging a battery comprises: measuring a battery voltage with a voltage sensor and a battery current with a current sensor; applying, with a charging circuit, a first charging current to the battery until the measured battery voltage exceeds a predetermined voltage threshold, a magnitude of the first charging current being held at a first constant value; applying, with the charging circuit, in response to the measured battery voltage exceeding the predetermined voltage threshold, a second charging current to the battery until a cutoff criterion is satisfied, a magnitude of the second charging current being such that the battery voltage exceeds a steady state voltage limit for the battery; after the cutoff criterion is satisfied, determining a rest voltage of the battery; and updating the cutoff criterion based on a difference between the determined rest voltage and a target rest voltage.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: May 14, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Nikhil Ravi, Anantharaman Subbaraman, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Gerd Simon Schmidt, Christoph Klee
  • Patent number: 10263447
    Abstract: A method and system for managing a battery system. The method including receiving at least one measured characteristic of the battery over a pre-defined time horizon from the at least one sensor, receiving at least one estimated characteristic of the battery from a electrochemical-based battery model based on differential algebraic equations, determining a cost function of a Moving Horizon Estimation based on the at least one measured characteristic and the at least one estimated characteristic, updating the electrochemical-based battery model based on the cost function, estimating at least one state of the at least one battery cell by applying the electrochemical-based battery model, and regulating at least one of charging or discharging of the battery based on the estimation of the at least one state of the at least one battery cell.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: April 16, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, Nikhil Ravi, John F. Christensen
  • Publication number: 20190109466
    Abstract: A method and system for managing a battery system. The method including receiving at least one measured characteristic of the battery over a pre-defined time horizon from the at least one sensor, receiving at least one estimated characteristic of the battery from a electrochemical-based battery model based on differential algebraic equations, determining a cost function of a Moving Horizon Estimation based on the at least one measured characteristic and the at least one estimated characteristic, updating the electrochemical-based battery model based on the cost function, estimating at least one state of the at least one battery cell by applying the electrochemical-based battery model, and regulating at least one of charging or discharging of the battery based on the estimation of the at least one state of the at least one battery cell.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 11, 2019
    Inventors: Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, Nikhil Ravi, John F. Christensen
  • Publication number: 20190093737
    Abstract: A multi-mode, power-split hybrid transmission system having two planetary gear (PG) sets connected to one engine, two electric motors, one output shaft, and each other by several clutches, brakes, and direct connection elements. Depending on the specific location and actuation of the various clutch and brake elements, the multi-mode, power-split hybrid transmission system can be run in one of several modes (e.g. electric drive, power-split, parallel hybrid, series hybrid, electronic continuously variable transmission (eCVT), generator, neutral, and the like).
    Type: Application
    Filed: September 25, 2018
    Publication date: March 28, 2019
    Applicants: The Regents of the University of Michigan, Robert Bosch GmbH
    Inventors: Ziheng PAN, Huei PENG, Shyam JADE, Jason SCHWANKE, Matt THORINGTON, Nikhil RAVI, Viktor RILL
  • Publication number: 20190089018
    Abstract: Methods and systems are described of managing a battery system. The battery system including at least one battery cell and one or more sensors configured to measure a temperature of the at least one battery cell. The method includes receiving a measurement of the temperature of the at least one battery cell, estimating an open circuit potential of the at least one battery cell, estimating a capacity fade of the at least one battery cell based on the open circuit potential of the at least one battery cell and a ratio of a change in the open circuit potential relative to a change in the temperature of the at least one battery cell, and regulating at least one of charging or discharging of the at least one battery cell based on the estimation of the capacity fade.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 21, 2019
    Inventors: John F. Christensen, Reinhardt Klein, Abdul-Kader Srouji, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Patent number: 10224579
    Abstract: Methods and systems are described of managing a battery system. The battery system including at least one battery cell and one or more sensors configured to measure a temperature of the at least one battery cell. The method includes receiving a measurement of the temperature of the at least one battery cell, estimating an open circuit potential of the at least one battery cell, estimating a capacity fade of the at least one battery cell based on the open circuit potential of the at least one battery cell and a ratio of a change in the open circuit potential relative to a change in the temperature of the at least one battery cell, and regulating at least one of charging or discharging of the at least one battery cell based on the estimation of the capacity fade.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: March 5, 2019
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Reinhardt Klein, Abdul-Kader Srouji, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Publication number: 20190036356
    Abstract: A method for monitoring a battery while the battery is connected to a load has been developed. The method includes measuring a first current level flowing through the battery to the load and a first voltage level of the battery at a first time, generating an estimated open cell voltage (OCV) of the battery at the first time based on the first current level, the first voltage level, and a predetermined model of the battery, identifying a first excitation level of the battery at the first time based on the first voltage level, the first current level and a cost optimization process, and identifying at least one of a state of charge (SoC) and state of health (SoH) of the battery using the estimated OCV only in response to the first excitation level being below a predetermined threshold.
    Type: Application
    Filed: July 31, 2017
    Publication date: January 31, 2019
    Inventors: Anantharaman Subbaraman, Nikhil Ravi, Reinhardt Klein, Gerd Simon Schmidt, Christopher Mayhew
  • Patent number: 10177419
    Abstract: Methods and systems are described of managing a battery system. The battery system including at least one battery cell and one or more sensors configured to measure a temperature of the at least one battery cell. The method includes receiving a measurement of the temperature of the at least one battery cell, estimating an open circuit potential of the at least one battery cell, estimating a capacity fade of the at least one battery cell based on the open circuit potential of the at least one battery cell and a ratio of a change in the open circuit potential relative to a change in the temperature of the at least one battery cell, and regulating at least one of charging or discharging of the at least one battery cell based on the estimation of the capacity fade.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: January 8, 2019
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Reinhardt Klein, Abdul-Kader Srouji, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Patent number: 10107214
    Abstract: A control system for an internal combustion engine includes a temperature sensor and an engine controller. The sensor measures the temperature of exhaust gas passing through an exhaust manifold of the engine during each cycle. The controller selectively operates the engine in a first state and a second state. In the first, normal state, a quantity of fuel based on an open loop fuel mass command value is injected into the engine each cycle. In the second state, the controller determines a temperature of the exhaust gas during a normal cycle, injects the quantity and additional fuel into the engine during a second cycle, determines the temperature of the exhaust gas during the second cycle, compares the temperatures, and adjusts the command value for fuel to be injected each cycle when operating the engine in the first state.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 23, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Wolfgang Fischer, Nikhil Ravi
  • Publication number: 20180290534
    Abstract: An All-Wheel-Drive (AWD), multi-mode, power-split hybrid vehicle employing a drive combining all electric motors and an internal combustion engine, together collocated on a 2-planetary-gear (PG) set. The present teachings are capable of delivering competitive performance while maximizing fuel economy through power-split hybrid design.
    Type: Application
    Filed: October 27, 2016
    Publication date: October 11, 2018
    Inventors: Ziheng PAN, Huei PENG, Nikhil RAVI
  • Publication number: 20180145526
    Abstract: A method for charging a battery comprises: measuring a battery voltage with a voltage sensor and a battery current with a current sensor; applying, with a charging circuit, a first charging current to the battery until the measured battery voltage exceeds a predetermined voltage threshold, a magnitude of the first charging current being held at a first constant value; applying, with the charging circuit, in response to the measured battery voltage exceeding the predetermined voltage threshold, a second charging current to the battery until a cutoff criterion is satisfied, a magnitude of the second charging current being such that the battery voltage exceeds a steady state voltage limit for the battery; after the cutoff criterion is satisfied, determining a rest voltage of the battery; and updating the cutoff criterion based on a difference between the determined rest voltage and a target rest voltage.
    Type: Application
    Filed: June 19, 2017
    Publication date: May 24, 2018
    Inventors: Nikhil Ravi, Anantharaman Subbaraman, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Gerd Simon Schmidt, Christoph Klee
  • Publication number: 20180145527
    Abstract: A method for charging a battery comprises: measuring a battery voltage with a voltage sensor and a battery current with a current sensor; applying, with a charging circuit, a first charging current to the battery until the measured battery voltage exceeds a predetermined voltage threshold, a magnitude of the first charging current being held at a first constant value; applying, with the charging circuit, in response to the measured battery voltage exceeding the predetermined voltage threshold, a second charging current to the battery until a cutoff criterion is satisfied, a magnitude of the second charging current being such that the battery voltage exceeds a steady state voltage limit for the battery; after the cutoff criterion is satisfied, determining a rest voltage of the battery; and updating the cutoff criterion based on a difference between the determined rest voltage and a target rest voltage.
    Type: Application
    Filed: October 9, 2017
    Publication date: May 24, 2018
    Inventors: Nikhil Ravi, Anantharaman Subbaraman, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Gerd Simon Schmidt, Christoph Klee
  • Publication number: 20180083461
    Abstract: A battery system, having a battery management system configured to determine the state of charge and state of health of a secondary battery. The battery management system may export data to and receive inputs from a remote computer which calculates at least a portion of the state of health of the battery.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Inventors: Nikhil Ravi, Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, John F. Christensen
  • Publication number: 20170338666
    Abstract: A battery management system comprising a processor and a memory storing instructions that, when executed by the processor, cause the battery management system to estimate one or more states of the battery by applying a battery model to account for physical parameters of a chemical composition of the battery based on one or more measured characteristics of the battery and the one or more estimated characteristics of the battery and regulate a first charging mode of the battery based on the estimation of the one or more states of the one or more battery cells and switch between the first charging mode and a second charging mode based on the estimation of the one or more states of the battery to allow for rapid charging of the battery.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 23, 2017
    Inventors: John F. Christensen, Reinhardt Klein, Ashish Krupadanam, Anahita MirTabatabaei, Nikhil Ravi
  • Patent number: 9816865
    Abstract: A temperature sensing device includes a probe unit on a first end and a sensor unit on a second end opposite the first end. The first end is introduced into an environment to be measured, such as an exhaust gas line from a combustion engine, and the second end is positioned in a region outside of the environment such that the sensor unit is at least partially insulated from a temperature of the environment. The probe unit, exposed to the temperature of the environment, achieves a temperature that corresponds to the temperature of the environment. The sensor unit is operable to sense the temperature of the probe unit and generate a corresponding electrical signal usable to determine a sensed temperature of the environment. The temperature of the environment can be determined on a cycle-by-cycle basis, and is usable for implementing advanced combustion strategies such as HCCI and SACI.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: November 14, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Ando Feyh, Gary O'Brien, Joel Oudart, Nikhil Ravi
  • Publication number: 20170222449
    Abstract: A method and system for managing a battery system. The method including receiving at least one measured characteristic of the battery over a pre-defined time horizon from the at least one sensor, receiving at least one estimated characteristic of the battery from a electrochemical-based battery model based on differential algebraic equations, determining a cost function of a Moving Horizon Estimation based on the at least one measured characteristic and the at least one estimated characteristic, updating the electrochemical-based battery model based on the cost function, estimating at least one state of the at least one battery cell by applying the electrochemical-based battery model, and regulating at least one of charging or discharging of the battery based on the estimation of the at least one state of the at least one battery cell.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 3, 2017
    Inventors: Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, Nikhil Ravi, John F. Christensen
  • Publication number: 20170222447
    Abstract: A method of managing a battery system, the battery system including at least one battery cell, at least one sensor configured to measure at least one characteristic of the battery cell, and a battery management system including a microprocessor and a memory, the method comprising receiving by the battery management system, from the at least one sensor at least one measured characteristic of the battery cell at a first time and at least one measured characteristic of the battery cell at a second time. The battery management system estimating, at least one state of the battery cell by applying a physics-based battery model, the physics based battery model being based on differential algebraic equations; and regulating by the battery management system, at least one of charging or discharging of the battery cell based on the at least one estimated state.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 3, 2017
    Inventors: Nikhil Ravi, Anahita MirTabatabaei, Reinhardt Klein, Ashish Krupadanam, John F. Christensen, Aleksandar Kojic, Sarah Stewart, Sun Ung Kim, Christina Johnston