Patents by Inventor Nikolai K. Moshchuk

Nikolai K. Moshchuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210061117
    Abstract: An automotive vehicle includes a vehicle-based charging unit including a receiving unit configured to receive power from a ground-based charging unit, the receiving unit including a multi-coil receiver, a first actuator operably coupled to the vehicle-based charging unit and configured to adjust a first position of the vehicle-based charging unit relative to the ground-based charging unit, and a controller configured to selectively actuate the first actuator.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 4, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kausalya Singuru, Suresh Gopalakrishnan, Nikolai K. Moshchuk, David Andrés Pérez Chaparro
  • Publication number: 20210018921
    Abstract: Systems, methods and apparatuses for motion control for an autonomous vehicle by implementing an adaptive skeleton construct interface with models, including: a first model which uses constructs for lateral control from a set of a plurality of constructs; and a second model which uses constructs for longitudinal control from a set of a plurality of constructs; and a path reconciling module for reconciling a path based on vehicle data to validate a path for operation and for implementing one or more of a set of lateral or longitudinal controls without having to re-create another lateral control or longitudinal control set, by selecting one or more of an already created lateral or longitudinal control sets to implement one or more sets of the plurality of constructs for vehicle control.
    Type: Application
    Filed: July 15, 2019
    Publication date: January 21, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kausalya Singuru, Nikolai K. Moshchuk, David Andres Perez Chaparro
  • Publication number: 20200257292
    Abstract: Presented are automated driving systems for executing intelligent vehicle operations in mixed-mu road conditions, methods for making/using such systems, and vehicles with enhanced headway control for transitional surface friction conditions. A method for executing an automated driving operation includes a vehicle controller receiving sensor signals indicative of road surface conditions of adjoining road segments, and determining, based on these sensor signals, road friction values for the road segments. The controller determines whether the road friction value is increasing or decreasing, and if a difference between the road friction values is greater than a calibrated minimum differential. Responsive to the friction difference being greater than the calibrated minimum differential and the road friction value decreasing, the vehicle controller executes a first vehicle control action.
    Type: Application
    Filed: February 8, 2019
    Publication date: August 13, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Qingrong Zhao, Bakhtiar B. Litkouhi, Nikolai K. Moshchuk
  • Publication number: 20200257304
    Abstract: Autonomous control of a subject vehicle including a longitudinal motion control system includes determining states of parameters associated with a trajectory for the subject vehicle and parameters associated with a control reference determined for the subject vehicle. A range control routine is executed to determine a first parameter associated with a range control command based upon the states of the plurality of parameters, and a speed control routine is executed to determine a second parameter associated with a speed control command based upon the states of the plurality of parameters. An arbitration routine is executed to evaluate the range control command and the speed control command, and operation of the subject vehicle is controlled to achieve a desired longitudinal state, wherein the desired longitudinal state is associated with a minimum of the range control command and the speed control command.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 13, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Nikolai K. Moshchuk, Kausalya Singuru, David Andrés Pérez Chaparro
  • Patent number: 10725470
    Abstract: A method is provided for autonomously operating a vehicle. The method includes receiving, at a processor, at least vehicle state data and vehicle object environment data; generating, with the processor, an optimal path for the vehicle with a cost function based on the vehicle state data and the vehicle object environment data; identifying, with the processor, at least one critical condition constraint based on at least one of the vehicle or vehicle environment; modifying, with the processor, at least a first portion of the optimal path based on the at least one critical condition constraint to result in a short-range trajectory portion; generating a resulting trajectory with the short-range trajectory portion; and implementing the resulting trajectory on the vehicle.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: July 28, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Seyedalireza Kasaiezadeh Mahabadi, Sayyed Rouhollah Jafari Tafti, Edward T. Heil, Nikolai K. Moshchuk, Bakhtiar B. Litkouhi
  • Publication number: 20200156694
    Abstract: A method and apparatus that control lateral movement of the vehicle during backward motion are provided. The method includes loading a desired backward path of vehicle, the backward path comprising waypoints to be traveled along during a rearward motion of the vehicle, reflecting the waypoints along a reflection axis perpendicular to a longitudinal axis that runs from front to back of the vehicle such that the reflected waypoints define virtual forward path; and controlling lateral movement of the vehicle to follow the waypoints along the forward path while the vehicle is traveling in a backward direction.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 21, 2020
    Inventors: Nikolai K. Moshchuk, Kausalya Singuru, David Andrés Pérez-Chaparro
  • Publication number: 20200101979
    Abstract: An automotive vehicle includes an actuator configured to control vehicle steering, acceleration, or shifting, a sensor configured to provide signals indicative of a lateral distance between a current vehicle location relative to a desired path, and a controller. The controller is configured to, in response to a determination that the lateral distance exceeds a threshold, automatically control the actuator according to an interstitial path. The interstitial path is automatically defined by the controller, and is based on a b-spline defined by a first position boundary condition at the current vehicle location, a second position boundary condition at a merge location relative to the desired vehicle path, a first curvature boundary condition based on a current vehicle yaw rate, and a second curvature boundary condition based on a curvature of the desired vehicle path at the merge location. The interstitial path is further optimized based on a cost function.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Nikolai K. Moshchuk, Kausalya Singuru, David Andrés Pérez Chaparro
  • Patent number: 10597028
    Abstract: A method and system for controlling a vehicle to improve vehicle dynamics are provided. The method includes receiving data from a plurality of sensors which monitor vehicle dynamics by monitoring at least wheel and steering movements associated with a vehicle system used in controlling vehicle dynamics by control outputs from a holistic vehicle control system. Then, estimating states of the vehicle from computations of longitudinal and latitudinal velocities, tire slip ratios, clutch torque, axle torque, brake torque, and slip angles derived from the data sensed by the sensors from the wheel and steering movements. Finally, formulating a model of vehicle dynamics by using estimations of vehicle states with a target function to provide analytical data to enable the model of vehicle dynamics to be optimized and for using the data associated with the model which has been optimized to change control outputs to improve in real-time the vehicle dynamics.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: March 24, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Seyedalireza Kasaiezadeh Mahabadi, Shih-Ken Chen, Bakhtiar B. Litkouhi, Nikolai K. Moshchuk, Patrick J. Monsere, Edward T. Heil
  • Patent number: 10427678
    Abstract: A method for providing low speed lateral steering control for a vehicle is disclosed. The method includes receiving sensor data corresponding to a road wheel angle, determining a planned vehicle path of travel, defining a road wheel angle search range based on a maximum road wheel angle rate, determining a steering control goal using the road wheel angle that tracks and measures a difference between a current vehicle path and the planned vehicle path, determining an optimal steering control signal using the road wheel angle and the steering control goal and providing the control signal to a steering controller.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: October 1, 2019
    Assignee: GM Global Technology Operations LLC.
    Inventors: Nikolai K. Moshchuk, Shih-ken Chen
  • Patent number: 10266202
    Abstract: Methods and system are provided for controlling a vehicle. The methods and systems read sensors and estimate pneumatic trail for a tire of the vehicle based on the sensor readings. The methods and systems determine presence or absence of a tire lateral saturation condition based on a comparison of the estimated pneumatic trail for the tire of the vehicle with a pneumatic trail threshold indicative of a tire lateral saturation condition. When the tire lateral saturation condition is present, the methods and systems determine a control value and use the control value as an input to a vehicle control module. The vehicle control module is responsive to the tire lateral saturation condition based on the control value.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: April 23, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Seyedalireza Kasaiezadeh Mahabadi, Bakhtiar B. Litkouhi, Nikolai K. Moshchuk, Shih-Ken Chen
  • Patent number: 10202125
    Abstract: Methods and systems are provided for an improved system and method for validating vehicle lateral velocity estimation. The provided system and method employ an efficient validation algorithm to detect lateral velocity estimation faults. The method and system are robust to road uncertainties and do not require redundant estimations or measurements. The provided system and method offer a technological solution for real time validation of lateral velocity estimation using already existing vehicle sensors, and are independent of (i) road condition information, (ii) wheel torque information, (iii) tire model information, and (iv) tire wear information.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: February 12, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Seyedalireza Kasaiezadeh Mahabadi, Ehsan Hashemi, Bakhtiar B. Litkouhi, Nikolai K. Moshchuk, Shih-Ken Chen
  • Patent number: 10204461
    Abstract: Methods and systems are provided for detecting faults in a sensor and reconstructing an output signal without use of the faulty sensor. In one embodiment, a method includes: receiving, by a processor, sensor data indicating a measured value from a first sensor; receiving, by a processor, sensor data indicating measured values from a plurality of other sensors; computing, by a processor, virtual values based on a vehicle model and the sensor data from the plurality of other sensors; computing, by a processor, a residual difference between the measured value from the first sensor and the virtual values; detecting, by a processor, whether a fault exists in the first sensor based on the residual difference; and when a fault in the sensor is detected, generating, by a processor, a control value based on the virtual values instead of the measured value.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: February 12, 2019
    Assignees: GM GLOBAL TECHNOLOGY OPERATIONS LLC, UNIVERSITY OF WATERLOO
    Inventors: Shih-Ken Chen, Nikolai K. Moshchuk, Bakhtiar B. Litkouhi, Reza Zarringhalam, Amir Khajepour, William Melek
  • Publication number: 20180362022
    Abstract: A method and system for controlling a vehicle to improve vehicle dynamics are provided. The method includes receiving data from a plurality of sensors which monitor vehicle dynamics by monitoring at least wheel and steering movements associated with a vehicle system used in controlling vehicle dynamics by control outputs from a holistic vehicle control system. Then, estimating states of the vehicle from computations of longitudinal and latitudinal velocities, tire slip ratios, clutch torque, axle torque, brake torque, and slip angles derived from the data sensed by the sensors from the wheel and steering movements. Finally, formulating a model of vehicle dynamics by using estimations of vehicle states with a target function to provide analytical data to enable the model of vehicle dynamics to be optimized and for using the data associated with the model which has been optimized to change control outputs to improve in real-time the vehicle dynamics.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: SEYEDALIREZA KASAIEZADEH MAHABADI, SHIH-KEN CHEN, BAKHTIAR B. LITKOUHI, NIKOLAI K. MOSHCHUK, PATRICK J. MONSERE, EDWARD T. HEIL
  • Publication number: 20180356819
    Abstract: A method is provided for autonomously operating a vehicle. The method includes receiving, at a processor, at least vehicle state data and vehicle object environment data; generating, with the processor, an optimal path for the vehicle with a cost function based on the vehicle state data and the vehicle object environment data; identifying, with the processor, at least one critical condition constraint based on at least one of the vehicle or vehicle environment; modifying, with the processor, at least a first portion of the optimal path based on the at least one critical condition constraint to result in a short-range trajectory portion; generating a resulting trajectory with the short-range trajectory portion; and implementing the resulting trajectory on the vehicle.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 13, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: SEYEDALIREZA KASAIEZADEH MAHABADI, SAYYED ROUHOLLAH JAFARI TAFTI, EDWARD T. HEIL, NIKOLAI K. MOSHCHUK, BAKHTIAR B. LITKOUHI
  • Publication number: 20180354513
    Abstract: A method for providing low speed lateral steering control for a vehicle is disclosed. The method includes receiving sensor data corresponding to a road wheel angle, determining a planned vehicle path of travel, defining a road wheel angle search range based on a maximum road wheel angle rate, determining a steering control goal using the road wheel angle that tracks and measures a difference between a current vehicle path and the planned vehicle path, determining an optimal steering control signal using the road wheel angle and the steering control goal and providing the control signal to a steering controller.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 13, 2018
    Inventors: Nikolai K. Moshchuk, Shih-ken Chen
  • Patent number: 10131360
    Abstract: Methods and systems are provided for determining a road surface friction coefficient and controlling a feature of the vehicle based thereon. In one embodiment, a method includes: receiving signals from an electronic power steering system and an inertial measurement unit; estimating parameters associated with an electronic power steering system model using an iterative optimization method; calculating an electronic power steering system variable using the electronic power steering system model, the estimated parameters and one or more of the received signals; determining whether the calculated electronic power steering system variable satisfies a fitness criterion; and when the calculated electronic power steering system variable does satisfy the fitness criterion, determining a road surface friction coefficient based on at least one of the estimated parameters.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: November 20, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yadollah Sabri, Simon E. Zimmerman, Yingmei Si, Steven T. Schweitzer, Qingrong Zhao, Qi Zhang, Nikolai K. Moshchuk
  • Publication number: 20180297633
    Abstract: Methods and system are provided for controlling a vehicle. The methods and systems read sensors and estimate pneumatic trail for a tire of the vehicle based on the sensor readings. The methods and systems determine presence or absence of a tire lateral saturation condition based on a comparison of the estimated pneumatic trail for the tire of the vehicle with a pneumatic trail threshold indicative of a tire lateral saturation condition. When the tire lateral saturation condition is present, the methods and systems determine a control value and use the control value as an input to a vehicle control module. The vehicle control module is responsive to the tire lateral saturation condition based on the control value.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 18, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: SEYEDALIREZA KASAIEZADEH MAHABADI, BAKHTIAR B. LITKOUHI, NIKOLAI K. MOSHCHUK, SHIH-KEN CHEN
  • Publication number: 20180297605
    Abstract: Methods and systems are provided for an improved system and method for validating vehicle lateral velocity estimation. The provided system and method employ an efficient validation algorithm to detect lateral velocity estimation faults. The method and system are robust to road uncertainties and do not require redundant estimations or measurements. The provided system and method offer a technological solution for real time validation of lateral velocity estimation using already existing vehicle sensors, and are independent of (i) road condition information, (ii) wheel torque information, (iii) tire model information, and (iv) tire wear information.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 18, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: SEYEDALIREZA KASAIEZADEH MAHABADI, EHSAN HASHEMI, BAKHTIAR B. LITKOUHI, NIKOLAI K. MOSHCHUK, SHIH-KEN CHEN
  • Patent number: 9988043
    Abstract: Methods and systems are provided for determining vehicle spin-out conditions including conditions indicative of a vehicle spin-out ahead of the vehicle actually spinning-out. The methods and systems receive motion parameters of a vehicle based on sensed signals from at least one vehicle sensor of an electronic power steering system and an inertial measurement unit. The method and systems estimate pneumatic trail based on a rate of change of self-aligning torque with respect to axle lateral force. The methods and systems determine vehicle spin-out conditions based on the estimated pneumatic trail. The methods and systems control at least one feature of a vehicle in response to the determined vehicle spin-out conditions.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: June 5, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Seyedalireza Kasaiezadeh Mahabadi, Bakhtiar B. Litkouhi, Shih-Ken Chen, Nikolai K. Moshchuk
  • Publication number: 20180043900
    Abstract: Methods and systems are provided for determining a road surface friction coefficient and controlling a feature of the vehicle based thereon. In one embodiment, a method includes: receiving signals from an electronic power steering system and an inertial measurement unit; estimating parameters associated with an electronic power steering system model using an iterative optimization method; calculating an electronic power steering system variable using the electronic power steering system model, the estimated parameters and one or more of the received signals; determining whether the calculated electronic power steering system variable satisfies a fitness criterion; and when the calculated electronic power steering system variable does satisfy the fitness criterion, determining a road surface friction coefficient based on at least one of the estimated parameters.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 15, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: YADOLLAH SABRI, SIMON E. ZIMMERMAN, YINGMEI SI, STEVEN T. SCHWEITZER, QINGRONG ZHAO, QI ZHANG, NIKOLAI K. MOSHCHUK