Patents by Inventor Nikolai K. Moshchuk

Nikolai K. Moshchuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140032049
    Abstract: A collision avoidance system for assisting a driver in avoiding a collision between a host vehicle and obstacle. A processor recursively calculates a time-to-collision with the obstacle and an optimal collision avoidance path for avoiding the collision. The optimum collision avoidance path is recursively generated based on a position and speed of the host vehicle relative to the obstacle and an updated calculated time-to-collision. A sensing device determines whether the driver of the vehicle has initiated a steering maneuver to avoid the obstacle. A steering assist mechanism maintains the host vehicle along the optimum collision avoidance path. The steering assist mechanism applies a steering assist torque for producing steering adjustments to assist in guiding the host vehicle along the optimum collision avoidance path to the target lane. The steering assist torque generated by the steering assist mechanism is recursively adjusted based on a recent updated optimum collision avoidance path.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Nikolai K. Moshchuk, Shih-Ken Chen, Chad T. Zagorski, Aamrapali Chatterjee
  • Patent number: 8527172
    Abstract: A collision avoidance system in a host vehicle that employs combined automatic braking and steering. The collision avoidance system defines thresholds that identify a time to collision with a target vehicle by the host vehicle that are based on the speed of the host vehicle, the acceleration of the host vehicle, the speed of the target vehicle, the acceleration of the target vehicle, the distance to the target vehicle from the host vehicle and a coefficient of friction of the roadway. The collision avoidance system provides full automatic collision avoidance braking if the time to collision is less than one threshold and the lane adjacent to the host vehicle is not clear. The collision avoidance system provides both automatic steering and braking of the host vehicle if the time to collision is less than another threshold and the lane adjacent to the host vehicle is clear.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: September 3, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Nikolai K. Moshchuk, Shih-Ken Chen, Chad T. Zagorski, Aamrapali Chatterjee
  • Publication number: 20130218396
    Abstract: A method and system may determine, in a vehicle, a desired path around an object based on a location of the object relative to the vehicle, relative speed, road parameters and one or more vehicle parameters. The method and system may calculate one or more vehicle control parameter values which minimize a predicted deviation from the desired vehicle path. The method and system may determine whether the one or more vehicle control parameter values would cause the vehicle to exceed one or more vehicle stability constraints. If the one or more vehicle control parameter values would cause the vehicle to exceed one or more vehicle stability constraints, the one or more vehicle control parameter values may be reduced to one or more vehicle control parameter values not causing the vehicle to exceed the one or more vehicle stability constraints. The method and system may output the one or more vehicle control parameter values to a vehicle automated control device.
    Type: Application
    Filed: July 9, 2012
    Publication date: August 22, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: NIKOLAI K. MOSHCHUK, SHIH-KEN CHEN, JIN-WOO LEE, CHAD T. ZAGORSKI, AAMRAPALI CHATTERJEE
  • Publication number: 20130179036
    Abstract: A lane tracking system for a vehicle includes a front steering controller, a rear steering controller, and a lane tracking processor. The front steering controller is configured to rotate a front wheel of the vehicle through a front steering angle in response to a front steering torque command, and the rear steering controller is configured to rotate a rear wheel of the vehicle through a rear steering angle in response to a rear steering torque command. The lane tracking processor is configured to determine a desired course of the vehicle along a roadway, estimate a trajectory of the vehicle based on sensed vehicle motion, compute an error between the determined desired course and the estimated trajectory, and provide a front steering torque command to the front steering controller, and a rear steering torque command to the rear steering controller to minimize the computed error.
    Type: Application
    Filed: January 11, 2012
    Publication date: July 11, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jin-Woo Lee, Nikolai K. Moshchuk, Shih-Ken Chen, Bakhtiar Brian Litkouhi
  • Publication number: 20130151075
    Abstract: A rollover avoidance method may include determining tire loading for at least two tires of a vehicle. A stability of the vehicle with regard to rolling over may be predicted based at least on the determined tire loading. The vehicle may be controlled at least on the basis of the predicted stability.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Nikolai K. Moshchuk, Shih-Ken Chen, Flavio Nardj
  • Patent number: 8457841
    Abstract: An analytical methodology for the specification of progressive optimal compression damping of a suspension system to negotiate severe events, yet provides very acceptable ride quality and handling during routine events. In a broad aspect, the method provides a progressive optimal unconstrained damping response of the wheel assembly with respect to the body. In a preferred aspect, the method provides a progressive optimal constrained damping response of the wheel assembly with respect to the body, wherein below a predetermined velocity a conventional damper force is retained.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: June 4, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Richard J. Knoll, William Golpe, Nikolai K. Moshchuk, Chandra S. Namuduri, Flavio Nardi, Jihan Ryu, Raviraj U. Nayak
  • Patent number: 8439173
    Abstract: A suspension component achieves progressive resistance via a secondary bleed valve, which functions as a support for the primary compression valve at higher displacements, in conjunction with a secondary nonlinear spring element configured to alter the force on the piston at high displacements.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: May 14, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: William Golpe, Chandra S. Namuduri, Walter B. Cwycyshyn, Nikolai K. Moshchuk
  • Publication number: 20130116854
    Abstract: A lane tracking system for tracking the position of a vehicle within a lane includes a camera configured to provide a video feed representative of a field of view and a video processor configured to receive the video feed from the camera and to generate latent video-based position data indicative of the position of the vehicle within the lane. The system further includes a vehicle motion sensor configured to generate vehicle motion data indicative of the motion of the vehicle, and a lane tracking processor. The lane tracking processor is configured to receive the video-based position data, updated at a first frequency; receive the sensed vehicle motion data, updated at a second frequency; estimate the position of the vehicle within the lane from the sensed vehicle motion data; and fuse the video-based position data with the estimate of the vehicle position within the lane using a Kalman filter.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 9, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Nikolai K. Moshchuk, Shuqing Zeng, Xingping Chen, Bakhtiar Brian Litkouhi
  • Patent number: 8428819
    Abstract: An analytical methodology for the specification of progressive optimal compression damping of a damper of a suspension system to negotiate a multiplicity of severe events, yet provides very acceptable ride quality and handling during routine events. The damping response of the damper is optimized based upon a progressive optimal constrained events damping function derived from a low envelope curve incorporated with a predetermined damper force acting on the wheel center below a predetermined wheel center velocity, u1, based on ride and handling considerations for a given vehicle or vehicle model according to the prior art methodology, whereby the low envelope curve is constructed utilizing a one degree of freedom nonlinear mechanical system model or a quarter car nonlinear mechanical system model.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: April 23, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Nikolai K. Moshchuk, Chandra S. Namuduri, Flavio Nardi, Jihan Ryu, Richard J. Knoll, William Golpe
  • Publication number: 20130096867
    Abstract: Systems and methods for determining angular velocity of a vehicle. Systems include an array of accelerometers and a computing unit configured to determine angular velocity as a function of acceleration measured by the array of accelerometers. Angular velocity can then be used, for example, by stability systems to control the vehicle.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 18, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Nikolai K. Moshchuk, Ivan Fadeev
  • Patent number: 8408351
    Abstract: A vehicle includes a suspension system operatively connecting a vehicle body to a plurality of wheels for maintaining contact between the wheels and a road surface, and for maintaining handling of the vehicle. A system for steering the vehicle and a braking system for decelerating the vehicle are also included. The vehicle additionally includes a plurality of thrusters, wherein at least one of the thrusters is arranged relative to each wheel and each of the plurality of thrusters is configured to generate a force. Furthermore, the vehicle additionally includes a controller configured for regulating the force generated by each of the thrusters to assist the suspension system with maintaining contact between the wheels and the road surface and maintaining handling, assist the steering system with steering, and assist the braking system with decelerating the vehicle. A method of assisting the vehicle suspension, steering, and braking systems is also disclosed.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven W. Holland, Nikolai K. Moshchuk
  • Publication number: 20130054128
    Abstract: In a vehicle, an optimal path curvature limited by one or more constraints may be determined. The constraints may be related to lateral jerk and one or more vehicle dynamics constraints. Based on the optimal path curvature, an optimal vehicle path around an object may be determined. The optimal vehicle path may be output to a collision avoidance control system. The collision avoidance control system may cause the vehicle to take a certain path.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Nikolai K. Moshchuk, Shih-Ken Chen, Chad T. Zagorski, Aamrapali Chatterjee
  • Publication number: 20130030651
    Abstract: A collision avoidance system in a host vehicle that provides automatic steering control using differential braking in the event that the normal steering control fails. The system determines whether a collision with an object, such as a target vehicle, in front of the host vehicle is imminent, and if so, determines an optimal path for the host vehicle to travel along to avoid the object if the collision is imminent. The collision avoidance system may determine that automatic steering is necessary to cause the vehicle to travel along the optimal path to avoid the target. If the collision avoidance system does determine that automatic steering is necessary and detects that normal vehicle steering has failed, the system uses differential braking to steer the vehicle along the path.
    Type: Application
    Filed: July 25, 2011
    Publication date: January 31, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Nikolai K. Moshchuk, Shih-Ken Chen, Jin-Woo Lee, Chad T. Zagorski, Aamrapali Chatterjee
  • Patent number: 8315764
    Abstract: A method to control a vehicle having a plurality of wheels includes monitoring desired vehicle dynamics, determining a desired corner force and moment distribution based upon the desired vehicle dynamics and a real-time closed form dynamics optimization solution, and controlling the vehicle based upon the desired corner force and moment distribution. The real-time closed form dynamics optimization solution is based upon a minimized center of gravity force error component, a minimized control energy component, and a maximized tire force reserve component.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: November 20, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Shih-Ken Chen, Youssef A. Ghoneim, Weiwen Deng, Nikolai K. Moshchuk, Bakhtiar Brian Litkouhi, Valery Pylypchuk
  • Publication number: 20120283907
    Abstract: Method, system and non-transitory computer-readable medium for fail-safe performance of a lane centering system. An electrical power steering (EPS) system of a vehicle is monitored for a failure and operation of the lane centering system is switched to a differential braking controller to output differential braking commands to a differential breaking system upon determining that a failure of the EPS system has occurred, where the output braking commands direct the differential braking system to apply force a brake for a wheel of vehicle, such by the applied braking force the vehicle follows a desired path determined for a lane centering operation.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jin-Woo LEE, Nikolai K. Moshchuk, Shih-Ken Chen
  • Publication number: 20120197469
    Abstract: A method for allocating forces among the corners of a vehicle having a redundant actuator suite includes determining a set of desired forces at the center of gravity of the vehicle, and allocating the set of desired forces among the corners of the vehicle as virtual control commands using a controller. The method also includes mapping the virtual control commands at the corners to actual or true control commands at the corners, and controlling a plurality of actuators at the corners using the actual or true control commands. The actuators may include friction brakes and wheel motors. Mapping the virtual control commands may include using a Least Squares formulation. Control of the actuators may be prioritized with respect to each other using weighting matrices. A vehicle includes a controller having actuators and a controller configured for executing the above method.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Youssef A. Ghoneim, Shih-Ken Chen, Valery Pylypchuk, Nikolai K. Moshchuk, Bakhtiar Brian Litkouhi
  • Patent number: 8234090
    Abstract: A system and method for estimating vehicle lateral velocity that defines a relationship between front and rear axle lateral forces and front and rear axle side-slip angles. The method includes providing measurements of vehicle yaw-rate, lateral acceleration, longitudinal speed, and steering angle. The method also includes using these measurements to provide a measurement of the front and rear axle forces. The method calculates a front axle lateral velocity and a rear axle lateral velocity, and calculates a front axle side-slip angle based on the rear axle lateral velocity and a rear axle side-slip angle based on the front axle lateral velocity. The method then estimates front and rear axle forces, and selects a virtual lateral velocity that minimizes an error between the estimated and measured lateral axle forces. The method then provides an estimated vehicle lateral velocity using the selected virtual lateral velocity.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 31, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Flavio Nardi, Jihan Ryu, Nikolai K. Moshchuk, Kevin A. O'Dea
  • Publication number: 20120152639
    Abstract: A vehicle includes a suspension system operatively connecting a vehicle body to a plurality of wheels for maintaining contact between the wheels and a road surface, and for maintaining handling of the vehicle. A system for steering the vehicle and a braking system for decelerating the vehicle are also included. The vehicle additionally includes a plurality of thrusters, wherein at least one of the thrusters is arranged relative to each wheel and each of the plurality of thrusters is configured to generate a force. Furthermore, the vehicle additionally includes a controller configured for regulating the force generated by each of the thrusters to assist the suspension system with maintaining contact between the wheels and the road surface and maintaining handling, assist the steering system with steering, and assist the braking system with decelerating the vehicle. A method of assisting the vehicle suspension, steering, and braking systems is also disclosed.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 21, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Steven W. Holland, Nikolai K. Moshchuk
  • Publication number: 20120101713
    Abstract: A system and method for providing an optimal collision avoidance path for a host vehicle that may potentially collide with a target vehicle. The method includes providing off-line an optimization look-up table for storing on the host vehicle that includes an optimal vehicle braking or longitudinal deceleration and an optimal distance along the optimal path based on a range of speeds of the host vehicle and coefficients of friction of the roadway surface. The method determines the current speed of the host vehicle and the coefficient of friction of the roadway surface during the potential collision, and uses the look-up table to determine the optimal longitudinal deceleration or braking of the host vehicle for the optimal vehicle path. The method also determines an optimal lateral acceleration or steering of the host vehicle for the optimal vehicle path based on a friction ellipse and the optimal braking.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Nikolai K. Moshchuk, Shih-Ken Chen, Chad T. Zagorski, Aamrapali Chatterjee
  • Publication number: 20120101701
    Abstract: A collision avoidance system in a host vehicle that employs combined automatic braking and steering. The collision avoidance system defines thresholds that identify a time to collision with a target vehicle by the host vehicle that are based on the speed of the host vehicle, the acceleration of the host vehicle, the speed of the target vehicle, the acceleration of the target vehicle, the distance to the target vehicle from the host vehicle and a coefficient of friction of the roadway. The collision avoidance system provides full automatic collision avoidance braking if the time to collision is less than one threshold and the lane adjacent to the host vehicle is not clear. The collision avoidance system provides both automatic steering and braking of the host vehicle if the time to collision is less than another threshold and the lane adjacent to the host vehicle is clear.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Nikolai K. Moshchuk, Shih-Ken Chen, Chad T. Zagorski, Aamrapali Chatterjee