Patents by Inventor Nikolai Ledentsov

Nikolai Ledentsov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8478133
    Abstract: The present invention refers to a method for robust multi-level encoding of optical signals. The method uses a transmitter that transforms electric signals into optical signals and a receiver capable to transform optical signals into electric signals. The transmitter is capable to generate optical pulses having at least two different durations. The amplitudes of the pulses are preferably close to each other. The transmitter is fast, and the receiver is slow such that the response time of the receiver exceeds at least the shortest of the durations of the optical pulses. Then the receiver effectively integrates the optical signal and generates the electric signal having a larger amplitude when the optical signal has a larger duration. Thus, the method converts the modulation in pulse duration into the modulation in signal amplitude. In different embodiments of the present invention, the transmitter can be realized by a light-emitting diode, superluminescent light-emitting diode, or a diode laser.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: July 2, 2013
    Assignee: VI Systems GmbH
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Patent number: 8355419
    Abstract: A tilted wave semiconductor diode laser containing additional structural elements that improve beam quality is provided. The tilted wave laser includes a narrow active waveguide coupled to a broad passive waveguide, and light generated in the active waveguide leaks to the broad waveguide and propagates in it in the form of a tilted optical wave. The device emits laser light coming out from the broad waveguide in the form of one or two narrow beams. The additional structural elements may include grooves intersecting the narrow waveguide and a stripe that suppress undesired emission from the narrow waveguide; grooves that extend parallel to the stripe that suppress parasitic lateral optical modes; unpumped sections of the stripe that suppress light emission from the narrow waveguide; and facet coatings having distinct reflectance for the light in the narrow and in the broad waveguides thus suppressing emission of light from the narrow waveguide.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: January 15, 2013
    Assignee: PBC Lasers GmbH
    Inventors: Vitaly Shchukin, Nikolai Ledentsov
  • Patent number: 8313962
    Abstract: Hybrid integration of vertical cavity surface emitting lasers (VCSELs) and/or other optical device components with silicon-based integrated circuits. A multitude of individual VCSELs or optical devices are processed on the surface of a compound semiconductor wafer and then transferred to a silicon-based integrated circuit. A specific sacrificial or removable separation layer is employed between the optical components and the mother semiconductor substrate. The transfer of the optical components to a carrier substrate is followed by the elimination of the sacrificial or separation layer and simultaneous removal of the mother substrate. This is followed by the attachment and interconnection of the optical components to the surface of, or embedded within the upper layers of, an integrated circuit, followed by the release of the components from the carrier substrate.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: November 20, 2012
    Assignee: Connector Optics LLC
    Inventors: James A. Lott, Nikolai Ledentsov, Vitaly Shchukin
  • Patent number: 8290016
    Abstract: A device contains at least one wavelength-tunable multilayer interference reflector controlled by an applied voltage and at least one cavity. The stopband edge wavelength of the wavelength-tunable multilayer interference reflector is preferably electrooptically tuned using the quantum confined Stark effect in the vicinity of the cavity mode (or a composite cavity mode), resulting in a modulated transmittance of the multilayer interference reflector. A light-emitting medium is preferably introduced in the cavity or in one of the cavities permitting the optoelectronic device to work as an intensity-modulated light-emitting diode or diode laser by applying an injection current. The device preferably contains at least three electric contacts to apply forward or reverse bias and may operate as a vertical cavity surface-emitting light emitter or modulator or as an edge-emitting light emitter or modulator.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: October 16, 2012
    Assignee: Connector Optics
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Patent number: 8218972
    Abstract: A wavelength division multiplexing system has an array of wavelength-tunable lasers with at least two wavelength-tunable lasers emitting laser light at mutually different wavelengths, a first diffraction grating, an optical fiber, a second diffraction grating, and an array of photodetectors. The laser light emitted by the different wavelength-tunable lasers wavelengths impinges upon the first diffraction grating where it is reflected so as to impinge on an input end of the optical fiber. The light then propagates in the optical fiber and comes out from an output end of the optical fiber. Then the laser light having at least two different wavelengths further impinges on a second diffraction grating, whereupon it is reflected such that laser light having a first wavelength impinges on a first photodetector, and laser light having a second wavelength impinges on a second photodetector, which is different from the first photodetector.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 10, 2012
    Assignee: Connector Optics Limited
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Publication number: 20110165707
    Abstract: Hybrid integration of vertical cavity surface emitting lasers (VCSELs) and/or other optical device components with silicon-based integrated circuits. A multitude of individual VCSELs or optical devices are processed on the surface of a compound semiconductor wafer and then transferred to a silicon-based integrated circuit. A specific sacrificial or removable separation layer is employed between the optical components and the mother semiconductor substrate. The transfer of the optical components to a carrier substrate is followed by the elimination of the sacrificial or separation layer and simultaneous removal of the mother substrate. This is followed by the attachment and interconnection of the optical components to the surface of, or embedded within the upper layers of, an integrated circuit, followed by the release of the components from the carrier substrate.
    Type: Application
    Filed: November 22, 2010
    Publication date: July 7, 2011
    Applicant: CONNECTOR OPTICS LLC
    Inventors: James A. Lott, Nikolai Ledentsov, Vitaly Shchukin
  • Patent number: 7949031
    Abstract: A semiconductor diode laser having a broad vertical waveguide and a broad lateral waveguide is disclosed emitting laser-light in a single vertical mode and a single lateral mode narrow beam. The vertical waveguide comprises a coupled cavity structure, wherein light, generated in the active medium placed in the first cavity leaks into the second cavity and returns back. Phase matching conditions govern the selection of a single vertical mode. A multi-stripe lateral waveguide comprises preferably a lateral photonic band crystal with a lateral optical defect created by selected pumping of multistripes. This approach allows the selection of a single lateral mode having a higher optical confinement factor and/or a lower absorption loss and/or a lower leakage loss compared to the rest lateral optical modes. This enables a single lateral mode lasing from a broad area field coupled laser array.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: May 24, 2011
    Assignee: PBC Lasers GmbH
    Inventors: Vitaly Shchukin, Nikolai Ledentsov
  • Publication number: 20110076026
    Abstract: The present invention refers to a method for robust multi-level encoding of optical signals. The method uses a transmitter that transforms electric signals into optical signals and a receiver capable to transform optical signals into electric signals. The transmitter is capable to generate optical pulses having at least two different durations. The amplitudes of the pulses are preferably close to each other. The transmitter is fast, and the receiver is slow such that the response time of the receiver exceeds at least the shortest of the durations of the optical pulses. Then the receiver effectively integrates the optical signal and generates the electric signal having a larger amplitude when the optical signal has a larger duration. Thus, the method converts the modulation in pulse duration into the modulation in signal amplitude. In different embodiments of the present invention, the transmitter can be realized by a light-emitting diode, superluminescent light-emitting diode, or a diode laser.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 31, 2011
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Publication number: 20100278201
    Abstract: A wavelength division multiplexing system has an array of wavelength-tunable lasers with at least two wavelength-tunable lasers emitting laser light at mutually different wavelengths, a first diffraction grating, an optical fiber, a second diffraction grating, and an array of photodetectors. The laser light emitted by the different wavelength-tunable lasers wavelengths impinges upon the first diffraction grating where it is reflected so as to impinge on an input end of the optical fiber. The light then propagates in the optical fiber and comes out from an output end of the optical fiber. Then the laser light having at least two different wavelengths further impinges on a second diffraction grating, whereupon it is reflected such that laser light having a first wavelength impinges on a first photodetector, and laser light having a second wavelength impinges on a second photodetector, which is different from the first photodetector.
    Type: Application
    Filed: July 1, 2010
    Publication date: November 4, 2010
    Applicant: CONNECTOR OPTICS LIMITED
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Patent number: 7772615
    Abstract: Semiconductor electrooptic medium shows behavior different from a medium based on quantum confined Stark Effect. A preferred embodiment has a type-II heterojunction, selected such, that, in zero electric field, an electron and a hole are localized on the opposite sides of the heterojunction having a negligible or very small overlap of the wave functions, and correspondingly, a zero or a very small exciton oscillator strength. Applying an electric field results in squeezing of the wave functions to the heterojunction which strongly increases the overlap of the electron and the hole wave functions, resulting in a strong increase of the exciton oscillator strength. Another embodiment of the novel electrooptic medium includes a heterojunction between a layer and a superlattice, wherein an electron and a hole in the zero electric field are localized on the opposite sides of the heterojunction, the latter being effectively a type-II heterojunction.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: August 10, 2010
    Assignee: Connector Optics
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Publication number: 20100135348
    Abstract: A method is disclosed for improving the functionality of a semiconductor diode laser with an extended vertical waveguide, wherein the active medium is located close to the top cladding layer of the waveguide, and the laser aims to emit light in a narrow beam with high brightness and/or to operate in the wavelength-stabilized regime. The goal is to suppress parasitic optical modes localized close to the top cladding layer of the waveguide. Unpumped sections and groves perpendicular to the stripe serve to suppress these parasitic modes. Deep (preferably a few tens of micrometers) groves parallel to the stripe suppress parasitic emission of light and the feedback in the closed lateral modes. In a tilted wave laser the longitudinal resonator can be preferably configured to have a selected length to ensure closed loops formed in the longitudinal direction by the tilted wave.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 3, 2010
    Inventors: Vitaly SHCHUKIN, Nikolai Ledentsov
  • Publication number: 20090296754
    Abstract: A device contains at least one wavelength-tunable multilayer interference reflector controlled by an applied voltage and at least one cavity. The stopband edge wavelength of the wavelength-tunable multilayer interference reflector is preferably electrooptically tuned using the quantum confined Stark effect in the vicinity of the cavity mode (or a composite cavity mode), resulting in a modulated transmittance of the multilayer interference reflector. A light-emitting medium is preferably introduced in the cavity or in one of the cavities permitting the optoelectronic device to work as an intensity-modulated light-emitting diode or diode laser by applying an injection current. The device preferably contains at least three electric contacts to apply forward or reverse bias and may operate as a vertical cavity surface-emitting light emitter or modulator or as an edge-emitting light emitter or modulator.
    Type: Application
    Filed: July 27, 2009
    Publication date: December 3, 2009
    Applicant: VI SYSTEMS GMBH
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Patent number: 7593436
    Abstract: A device contains at least one wavelength-tunable multilayer interference reflector controlled by an applied voltage and at least one cavity. The stopband edge wavelength of the wavelength-tunable multilayer interference reflector is preferably electrooptically tuned using the quantum confined Stark effect in the vicinity of the cavity mode (or a composite cavity mode), resulting in a modulated transmittance of the multilayer interference reflector. A light-emitting medium is preferably introduced in the cavity or in one of the cavities permitting the optoelectronic device to work as an intensity-modulated light-emitting diode or diode laser by applying an injection current. The device preferably contains at least three electric contacts to apply forward or reverse bias and may operate as a vertical cavity surface emitting light-emitter or modulator or as an edge-emitting light emitter or modulator.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: September 22, 2009
    Assignee: VI Systems GmbH
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Patent number: 7583712
    Abstract: A light emitting device is disclosed that emits light from the surface in a broad spectral range and in a broad range of angles tilted with respect to the direction normal to the exit surface. An apparatus for generating wavelength-stabilized light is formed of a light-emitting device, an external cavity and at least one external mirror. Light emitted by the light-emitting device at a certain preselected angle, propagates through the external cavity, impinges on the external mirror and is reflected back. Light emitted at other angles does not impinge on the external mirror. Thus, a feedback occurs only for the light emitted at a preselected angle. Light impinged on the external mirror and reflected back undergoes interference with the emitted light. The interference can be constructive or destructive. Constructive interference results in a positive feedback. The positive feedback occurs, if light emitted by the light-emitting device is reflected back and reaches the active region in phase, i.e.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: September 1, 2009
    Assignee: PBC Lasers GmbH
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Publication number: 20090116525
    Abstract: A semiconductor diode laser having a broad vertical waveguide and a broad lateral waveguide is disclosed emitting laser-light in a single vertical mode and a single lateral mode narrow beam. The vertical waveguide comprises a coupled cavity structure, wherein light, generated in the active medium placed in the first cavity leaks into the second cavity and returns back. Phase matching conditions govern the selection of a single vertical mode. A multi-stripe lateral waveguide comprises preferably a lateral photonic band crystal with a lateral optical defect created by selected pumping of multistripes. This approach allows the selection of a single lateral mode having a higher optical confinement factor and/or a lower absorption loss and/or a lower leakage loss compared to the rest lateral optical modes. This enables a single lateral mode lasing from a broad area field coupled laser array.
    Type: Application
    Filed: August 28, 2008
    Publication date: May 7, 2009
    Inventors: Vitaly SHCHUKIN, Nikolai Ledentsov
  • Publication number: 20090041464
    Abstract: Semiconductor electrooptic medium shows behavior different from a medium based on quantum confined Stark Effect. A preferred embodiment has a type-II heterojunction, selected such, that, in zero electric field, an electron and a hole are localized on the opposite sides of the heterojunction having a negligible or very small overlap of the wave functions, and correspondingly, a zero or a very small exciton oscillator strength. Applying an electric field results in squeezing of the wave functions to the heterojunction which strongly increases the overlap of the electron and the hole wave functions, resulting in a strong increase of the exciton oscillator strength. Another embodiment of the novel electrooptic medium includes a heterojunction between a layer and a superlattice, wherein an electron and a hole in the zero electric field are localized on the opposite sides of the heterojunction, the latter being effectively a type-II heterojunction.
    Type: Application
    Filed: August 7, 2008
    Publication date: February 12, 2009
    Applicant: VI SYSTEMS GMBH
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Patent number: 7421001
    Abstract: A device contains at least one leaky waveguide layer, and has a transparent substrate, having a higher refractive index. The leakage loss of the waveguide exceeds the modal gain needed to initiate waveguide lasing. The leaky emission is going into the substrate at a certain angle, is reflected from the substrate back surface, and returns towards the leaky waveguide layer exhibiting constructive or destructive interference. As the leakage emission is returned to the active medium, the low threshold current density lasing is possible. As the leakage angle is defined for a given wavelength, interference enables lasing only at certain wavelengths making it possible to realize wavelength-selectivity. The lobes of the output emission can be made arbitrarily narrow by increasing the thickness of the substrate and the exit angle of the lobes is controlled by the leakage angle of the waveguide.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: September 2, 2008
    Assignee: PBC Lasers GmbH
    Inventors: Vitaly Shchukin, Nikolai Ledentsov
  • Patent number: 7369583
    Abstract: A device contains at least one wavelength-tunable element controlled by an applied voltage and at least two resonant cavities, where the resonant wavelength of the tunable element is preferably elecrooptically tuned using the quantum confined Stark effect around the resonant wavelength of the other cavity or cavities, resulting in a modulated transmittance of the system. A light-emitting medium is preferably introduced into one of the cavities, permitting the optoelectronic device to work as an intensity-modulated light-emitting diode or diode laser by applying an injection current. The device preferably contains at least three electric contacts to apply a forward or a reverse bias and may operate as a vertical cavity surface emitting light-emitter or modulator or as a tilted cavity light emitter or modulator. Adding a few modulator sections enables applications in semiconductor optical amplifiers, frequency converters or lock-in optical amplifiers.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: May 6, 2008
    Assignee: Innolume GmbH
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Publication number: 20080069173
    Abstract: A device contains at least one leaky waveguide layer, and has a transparent substrate, having a higher refractive index. The leakage loss of the waveguide exceeds the modal gain needed to initiate waveguide lasing. The leaky emission is going into the substrate at a certain angle, is reflected from the substrate back surface, and returns towards the leaky waveguide layer exhibiting constructive or destructive interference. As the leakage emission is returned to the active medium, the low threshold current density lasing is possible. As the leakage angle is defined for a given wavelength, interference enables lasing only at certain wavelengths making it possible to realize wavelength-selectivity. The lobes of the output emission can be made arbitrarily narrow by increasing the thickness of the substrate and the exit angle of the lobes is controlled by the leakage angle of the waveguide.
    Type: Application
    Filed: June 16, 2006
    Publication date: March 20, 2008
    Inventors: Vitaly Shchukin, Nikolai Ledentsov
  • Patent number: 7339965
    Abstract: A semiconductor optoelectronic device includes at least one cavity and one multilayered interference reflector. The cavity is designed preferably to possess properties of an antiwaveguiding cavity, where no optical modes propagate in the lateral plane. The existing optical modes are the modes propagating in the vertical direction or in a direction tilted to the vertical direction at an angle smaller than the angle of the total internal reflection at the semiconductor/air interface. This design reduces the influence of parasitic optical modes and improves characteristics of optoelectronic devices including vertical cavity surface emitting lasers, tilted cavity lasers emitting through the top surface or the substrate, vertical or tilted cavity resonant photodetectors, vertical or tilted cavity resonant optical amplifiers, and light-emitting diodes.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: March 4, 2008
    Assignee: Innolume GmbH
    Inventors: Nikolai Ledentsov, Vitaly Shchukin