Patents by Inventor Nikolaus Rettelbach

Nikolaus Rettelbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110200198
    Abstract: An audio encoder has a common preprocessing stage, an information sink based encoding branch such as spectral domain encoding branch, a information source based encoding branch such as an LPC-domain encoding branch and a switch for switching between these branches at inputs into these branches or outputs of these branches controlled by a decision stage. An audio decoder has a spectral domain decoding branch, an LPC-domain decoding branch, one or more switches for switching between the branches and a common post-processing stage for post-processing a time-domain audio signal for obtaining a post-processed audio signal.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Sascha Disch, Juergen Herre, Yoshikazu Yokotani, Stefan Wabnik, Gerald Schuller, Jens Hirschfeld
  • Publication number: 20110200125
    Abstract: In a method for encoding a symbol it is determined whether the symbol can be encoded by a codeword of a first codebook. In case this is true, the appropriate codeword for the symbol is selected from the first codebook. Otherwise, a codeword is selected from the first codebook indicating that the symbol cannot be encoded by a codeword of the first codebook and the symbol is split into a plurality of first sub-symbols and for at least one of the first sub-symbols a codeword is selected from a second codebook. Also a corresponding method for decoding is described.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Markus Multrus, Nikolaus Rettelbach, Stefan Bayer, Bernhard Grill, Manuel Jander
  • Publication number: 20110202352
    Abstract: An apparatus for generating bandwidth extension output data for an audio signal has a noise floor measurer, a signal energy characterizer and a processor. The audio signal has components in a first frequency band and components in a second frequency band, the bandwidth extension output data are adapted to control a synthesis of the components in the second frequency band. The noise floor measurer measures noise floor data of the second frequency band for a time portion of the audio signal. The signal energy characterizer derives energy distribution data, the energy distribution data characterizing an energy distribution in a spectrum of the time portion of the audio signal. The processor combines the noise floor data and the energy distribution data to obtain the bandwidth extension output data.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo
  • Publication number: 20110202353
    Abstract: An apparatus for decoding an encoded audio signal having first and second portions encoded in accordance with first and second encoding algorithms, respectively, BWE parameters for the first and second portions and a coding mode information indicating a first or a second decoding algorithm, includes first and second decoders, a BWE module and a controller. The decoders decode portions in accordance with decoding algorithms for time portions of the encoded signal to obtain decoded signals. The BWE module has a controllable crossover frequency and is configured for performing a bandwidth extension algorithm using the first decoded signal and the BWE parameters for the first portion, and for performing a bandwidth extension algorithm using the second decoded signal and the bandwidth extension parameter for the second portion. The controller controls the crossover frequency for the BWE module in accordance with the coding mode information.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederick Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo
  • Publication number: 20110202337
    Abstract: For classifying different segments of a signal which has segments of at least a first type and second type, e.g. audio and speech segments, the signal is short-term classified on the basis of the at least one short-term feature extracted from the signal and a short-term classification result is delivered. The signal is also long-term classified on the basis of the at least one short-term feature and at least one long-term feature extracted from the signal and a long-term classification result is delivered. The short-term classification result and the long-term classification result are combined to provide an output signal indicating whether a segment of the signal is of the first type or of the second type.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Guillaume Fuchs, Stefan Bayer, Jens Hirschfeld, Juergen Herre, Jeremie Lecomte, Frederik Nagel, Nikolaus Rettelbach, Stefan Wabnik, Yoshikazu Yokotani
  • Publication number: 20110202355
    Abstract: An apparatus for encoding includes a first domain converter, a switchable bypass, a second domain converter, a first processor and a second processor to obtain an encoded audio signal having different signal portions represented by coded data in different domains, which have been coded by different coding algorithms. Corresponding decoding stages in the decoder together with a bypass for bypassing a domain converter allow the generation of a decoded audio signal with high quality and low bit rate.
    Type: Application
    Filed: January 14, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami
  • Publication number: 20110202354
    Abstract: An audio encoder has a first information sink oriented encoding branch such as a spectral domain encoding branch, a second information source or SNR oriented encoding branch such as an LPC-domain encoding branch, and a switch for switching between the first encoding branch and the second encoding branch, wherein the second encoding branch has a converter into a specific domain different from the spectral domain such as an LPC analysis stage generating an excitation signal, and wherein the second encoding branch furthermore has a specific domain coding branch such as LPC domain processing branch, and a specific spectral domain coding branch such as LPC spectral domain processing branch, and an additional switch for switching between the specific domain coding branch and the specific spectral domain coding branch.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach
  • Publication number: 20110202358
    Abstract: An apparatus calculates a number of spectral envelopes to be derived by a spectral band replication (SBR) encoder, wherein the SBR encoder is adapted to encode an audio signal using a plurality of sample values within a predetermined number of subsequent time portions in an SBR frame extending from an initial time to a final time, the predetermined number of subsequent time portions being arranged in a time sequence given by the audio signal. The apparatus has a decision value calculator for determining a decision value, the decision value measuring a deviation in spectral energy distributions of a pair of neighboring time portions. The apparatus further has a detector for detecting a violation of a threshold by the decision value and a processor for determining a first envelope border between the pair of neighboring time portions when the violation of the threshold is detected.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo
  • Publication number: 20110170711
    Abstract: An encoder for providing an audio stream on the basis of a transform-domain representation of an input audio signal includes a quantization error calculator configured to determine a multi-band quantization error over a plurality of frequency bands of the input audio signal for which separate band gain information is available. The encoder also includes an audio stream provider for providing the audio stream such that the audio stream includes information describing an audio content of the frequency bands and information describing the multi-band quantization error. A decoder for providing a decoded representation of an audio signal on the basis of an encoded audio stream representing spectral components of frequency bands of the audio signal includes a noise filler for introducing noise into spectral components of a plurality of frequency bands to which separate frequency band gain information is associated on the basis of a common multi-band noise intensity value.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Nikolaus Rettelbach, Bernhard Grill, Guillaume Fuchs, Stefan Geyersberger, Markus Multrus, Harald Popp, Juergen Herre, Stefan Wabnik, Gerald Schuller, Jens Hirschfeld
  • Publication number: 20110173008
    Abstract: An audio encoder adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame has a number of time domain audio samples, having a predictive coding analysis stage for determining information on coefficients of a synthesis filter and information on a prediction domain frame based on a frame of audio samples. The audio encoder further has a frequency domain transformer for transforming a frame of audio samples to the frequency domain to obtain a frame spectrum and an encoding domain decider for deciding whether encoded data for a frame is based on the information on the coefficients and on the information on the prediction domain frame, or based on the frame spectrum.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Jeremie Lecomte, Philippe Gournay, Stefan Bayer, Markus Multrus, Nikolaus Rettelbach
  • Publication number: 20110173012
    Abstract: A noise filler for providing a noise-filled spectral representation of an audio signal on the basis of an input spectral representation of the audio signal has a spectral region identifier configured to identify spectral regions of the input spectral representation spaced from non-zero spectral regions of the input spectral representation by at least one intermediate spectral region, to obtain identified spectral regions, and a noise inserter configured to selectively introduce noise into the identified spectral regions to obtain the noise-filled spectral representation of the audio signal. A noise filling parameter calculator for providing a noise filling parameter on the basis of a quantized spectral representation of an audio signal has a spectral region identifier, as mentioned above, and a noise value calculator configured to selectively consider quantization errors of the identified spectral regions for a calculation of the noise filling parameter.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Nikolaus Rettelbach, Bernhard Grill, Guillaume Fuchs, Stefan Geyersberger, Markus Multrus, Harald Popp, Juergen Herre, Stefan Wabnik, Gerald Schuller, Jens Hirschfeld
  • Publication number: 20110173006
    Abstract: An audio signal synthesizer generates a synthesis audio signal having a first frequency band and a second synthesized frequency band derived from the first frequency band and comprises a patch generator, a spectral converter, a raw signal processor and a combiner. The patch generator performs at least two different patching algorithms, each patching algorithm generating a raw signal. The patch generator is adapted to select one of the at least two different patching algorithms in response to a control information. The spectral converter converts the raw signal into a raw signal spectral representation. The raw signal processor processes the raw signal spectral representation in response to spectral domain spectral band replication parameters to obtain an adjusted raw signal spectral representation.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Frederik Nagel, Sascha Disch, Nikolaus Rettelbach, Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Stefan Wabnik
  • Publication number: 20110173007
    Abstract: An audio encoder for encoding segments of coefficients, the segments of coefficients representing different time or frequency resolutions of a sampled audio signal, the audio encoder including a processor for deriving a coding context for a currently encoded coefficient of a current segment based on a previously encoded coefficient of a previous segment, the previously encoded coefficient representing a different time or frequency resolution than the currently encoded coefficient. The audio encoder further includes an entropy encoder for entropy encoding the current coefficient based on the coding context to obtain an encoded audio stream.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Inventors: Markus Multrus, Bernhard Grill, Guillaume Fuchs, Stefan Geyersberger, Nikolaus Rettelbach, Virgilio Bacigalupo
  • Publication number: 20110112670
    Abstract: A signal manipulator for manipulating an audio signal having a transient event may have a transient remover, a signal processor and a signal inserter for inserting a time portion in a processed audio signal at a signal location where the transient event was removed before processing by the transient remover, so that a manipulated audio signal has a transient event not influenced by the processing, whereby the vertical coherence of the transient event is maintained instead of any processing performed in the signal processor, which would destroy the vertical coherence of a transient.
    Type: Application
    Filed: February 17, 2009
    Publication date: May 12, 2011
    Inventors: Sascha Disch, Frederik Nagel, Nikolaus Rettelbach, Markus Multrus, Guillaume Fuchs
  • Publication number: 20100262420
    Abstract: An audio encoder for encoding an audio signal includes an impulse extractor for extracting an impulse-like portion from the audio signal. This impulse-like portion is encoded and forwarded to an output interface. Furthermore, the audio encoder includes a signal encoder which encodes a residual signal derived from the original audio signal so that the impulse-like portion is reduced or eliminated in the residual audio signal. The output interface forwards both, the encoded signals, i.e., the encoded impulse signal and the encoded residual signal for transmission or storage. On the decoder-side, both signal portions are separately decoded and then combined to obtain a decoded audio signal.
    Type: Application
    Filed: June 5, 2008
    Publication date: October 14, 2010
    Applicant: Frauhofer-Gesellschaft zur Forderung Der angewandten Forschung e.V.
    Inventors: Juergen Herre, Ralf Geiger, Stefan Bayer, Guillaume Fuchs, Ulrich Kraemer, Nikolaus Rettelbach, Bernhard Grill
  • Publication number: 20100217607
    Abstract: An audio decoder for providing a decoded representation of an audio content on the basis of an encoded representation of the audio content comprises a linear-prediction-domain decoder core configured to provide a time-domain representation of an audio frame on the basis of a set of linear-prediction domain parameters associated with the audio frame and a frequency-domain decoder core configured to provide a time-domain representation of an audio frame on the basis of a set of frequency-domain parameters, taking into account a transform window out of a set comprising a plurality of different transform windows. The audio decoder comprises a signal combiner configured to overlap-and-add-time-domain representations of subsequent audio frames encoded in different domains, in order to smoothen a transition between the time-domain representations of the subsequent frames.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 26, 2010
    Inventors: Max Neuendorf, Jeremie Lecomte, Markus Multrus, Stefan Bayer, Frederik Nagel, Guillaume Fuchs, Julien Robilliard, Nikolaus Rettelbach, Ralf Geiger, Bernhard Grill
  • Publication number: 20090274210
    Abstract: For determining a quantizer step size for quantizing a signal including audio or video information, a first quantizer step size as well as an interference threshold are provided. Then, the actual interference introduced by the first quantizer step size is determined and compared with the interference threshold. Despite the fact that the comparison reveals that the actually introduced interference exceeds the threshold, a second, coarser quantizer step size is nevertheless used, which will then be used for quantization if it turns out that the interference introduced by the coarser, second quantizer step size falls below the threshold or falls below the interference introduced by the first quantizer step size. Thus, the quantization interference is reduced while the quantization is coarsened and, thus, the compression gain is increased.
    Type: Application
    Filed: July 2, 2009
    Publication date: November 5, 2009
    Inventors: Bernhard Grill, Michael Schug, Bodo Teichmann, Nikolaus Rettelbach
  • Patent number: 7574355
    Abstract: For determining a quantizer step size for quantizing a signal including audio or video information, a first quantizer step size as well as an interference threshold are provided. Then, the actual interference introduced by the first quantizer step size is determined and compared with the interference threshold. Despite the fact that the comparison reveals that the actually introduced interference exceeds the threshold, a second, coarser quantizer step size is nevertheless used, which will then be used for quantization if it turns out that the interference introduced by the coarser, second quantizer step size falls below the threshold or falls below the interference introduced by the first quantizer step size. Thus, the quantization interference is reduced while the quantization is coarsened and, thus, the compression gain is increased.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 11, 2009
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Bernhard Grill, Michael Schug, Bodo Teichmann, Nikolaus Rettelbach
  • Publication number: 20060293884
    Abstract: For determining a quantizer step size for quantizing a signal including audio or video information, a first quantizer step size as well as an interference threshold are provided. Then, the actual interference introduced by the first quantizer step size is determined and compared with the interference threshold. Despite the fact that the comparison reveals that the actually introduced interference exceeds the threshold, a second, coarser quantizer step size is nevertheless used, which will then be used for quantization if it turns out that the interference introduced by the coarser, second quantizer step size falls below the threshold or falls below the interference introduced by the first quantizer step size. Thus, the quantization interference is reduced while the quantization is coarsened and, thus, the compression gain is increased.
    Type: Application
    Filed: August 30, 2006
    Publication date: December 28, 2006
    Inventors: Bernhard Grill, Michael Schug, Bodo Teichmann, Nikolaus Rettelbach
  • Patent number: 6980143
    Abstract: A scalable encoder having a first encoder, a decoder and a second encoder includes, above that, a phase distorter to reduce a non-linear frequency-dependent phase distortion introduced by the first encoder or by the decoder, which results in an increased difference signal of a comparator. Thus, a difference signal with less energy is obtained that the second encoder can encode with less bits, that is with a higher bit efficiency.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: December 27, 2005
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung ev
    Inventors: Karsten Linzmeier, Nikolaus Rettelbach, Eric Allamanche, Bernhard Grill