Patents by Inventor Nikolaus Rettelbach

Nikolaus Rettelbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130010985
    Abstract: A signal manipulator for manipulating an audio signal having a transient event may have a transient remover, a signal processor and a signal inserter for inserting a time portion in a processed audio signal at a signal location where the transient event was removed before processing by the transient remover, so that a manipulated audio signal has a transient event not influenced by the processing, whereby the vertical coherence of the transient event is maintained instead of any processing performed in the signal processor, which would destroy the vertical coherence of a transient.
    Type: Application
    Filed: May 7, 2012
    Publication date: January 10, 2013
    Inventors: Sascha DISCH, Frederick Nagel, Nikolaus Rettelbach, Markus Multrus, Guillaume Fuchs
  • Publication number: 20130013301
    Abstract: An audio decoder includes an arithmetic decoder for providing a plurality of decoded spectral values on the basis of an arithmetically encoded representation of the spectral values, and a frequency-domain-to-time-domain converter for providing a time-domain audio representation using the decoded spectral values. The arithmetic decoder selects a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state described by a numeric current context value. The arithmetic decoder determines the numeric current context value in dependence on a plurality of previously decoded spectral values. The arithmetic decoder evaluates a hash table, entries of which define both significant state values and boundaries of intervals of numeric context values, in order to select the mapping rule. A mapping rule index value is individually associated to a numeric context value being a significant state value.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 10, 2013
    Inventors: Vignesh Subbaraman, Guillaume Fuchs, Markus Multrus, Nikolaus Rettelbach, Marc Gayer, Oliver Weiss, Christian Griebel, Patrick Warmbold
  • Publication number: 20130013322
    Abstract: An audio decoder has an arithmetic decoder for providing decoded spectral values on the basis of an arithmetically-encoded representation and a frequency-domain-to-time-domain converter for providing a time-domain audio representation. The arithmetic decoder selects a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state described by a numeric current context value which is determined in dependence on previously decoded spectral values. The arithmetic decoder obtains a plurality of context subregion values on the basis of previously decoded spectral values and derives a numeric current context value associated with one or more spectral values to be decoded in dependence on stored context subregion values. The arithmetic decoder computes the norm of a vector formed by a plurality of previously decoded spectral values in order to obtain a common context subregion value. An audio encoder uses a similar concept.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 10, 2013
    Inventors: Guillaume Fuchs, Markus Multrus, Nikolaus Rettelbach, Vignesh Subbaraman, Oliver Weiss, Marc Gayer, Patrick Warmbold, Christian Griebel
  • Publication number: 20130013323
    Abstract: An audio decoder includes an arithmetic decoder for providing decoded spectral values on the basis of an arithmetically-encoded representation of the spectral values and a frequency-domain-to-time-domain converter for providing a time-domain audio representation using the decoded spectral values. The arithmetic decoder selects a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state described by a numeric current context value, and determines the numeric current context value in dependence on a plurality of previously-decoded spectral values. The arithmetic decoder modifies a number representation of a numeric previous context value, describing a context state associated with one or more previously decoded spectral values, in dependence on a context subregion value, to acquire a number representation of a numeric current context value describing a context state associated with one or more spectral values to be decoded. An audio encoder uses a similar concept.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 10, 2013
    Inventors: Vignesh Subbaraman, Guillaume Fuchs, Markus Multrus, Nikolaus Rettelbach, Oliver Weiss, Marc Gayer, Patrick Warmbold, Christian Griebel
  • Publication number: 20130010983
    Abstract: A signal manipulator for manipulating an audio signal having a transient event may have a transient remover, a signal processor and a signal inserter for inserting a time portion in a processed audio signal at a signal location where the transient event was removed before processing by the transient remover, so that a manipulated audio signal has a transient event not influenced by the processing, whereby the vertical coherence of the transient event is maintained instead of any processing performed in the signal processor, which would destroy the vertical coherence of a transient.
    Type: Application
    Filed: May 7, 2012
    Publication date: January 10, 2013
    Inventors: Sascha DISCH, Frederik Nagel, Nikolaus Rettelbach, Markus Multrus, Guillaume Fuchs
  • Publication number: 20130003992
    Abstract: A signal manipulator for manipulating an audio signal having a transient event may have a transient remover, a signal processor and a signal inserter for inserting a time portion in a processed audio signal at a signal location where the transient event was removed before processing by the transient remover, so that a manipulated audio signal has a transient event not influenced by the processing, whereby the vertical coherence of the transient event is maintained instead of any processing performed in the signal processor, which would destroy the vertical coherence of a transient.
    Type: Application
    Filed: May 7, 2012
    Publication date: January 3, 2013
    Inventors: Sascha DISCH, Frederik Nagel, Nikolaus Rettelbach, Markus Multrus, Guillaume Fuchs
  • Publication number: 20120330670
    Abstract: An audio decoder has an arithmetic decoder for providing decoded spectral values on the basis of an arithmetically-encoded representation and a frequency-domain-to-time-domain converter for providing a time-domain audio representation. The arithmetic decoder selects a mapping rule describing a mapping of a code value onto a symbol code in dependence on a numeric current context value describing a current context state. The arithmetic decoder determines the numeric current context value in dependence on a plurality of previously decoded spectral values. The arithmetic decoder evaluates at least one table using an iterative interval size reduction to determine whether the numeric current context value is identical to a table context value described by an entry of the table or lies within an interval described by entries of the table, and derives a mapping rule index value describing a selected mapping table. An audio encoder also uses an iterative interval table size reduction.
    Type: Application
    Filed: April 19, 2012
    Publication date: December 27, 2012
    Applicant: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Guillaume Fuchs, Vignesh Subbaraman, Nikolaus Rettelbach, Markus Multrus, Marc Gayer, Patrick Warmbold, Christian Griebel, Oliver Weiss
  • Patent number: 8321210
    Abstract: An apparatus for encoding includes a first domain converter, a switchable bypass, a second domain converter, a first processor and a second processor to obtain an encoded audio signal having different signal portions represented by coded data in different domains, which have been coded by different coding algorithms. Corresponding decoding stages in the decoder together with a bypass for bypassing a domain converter allow the generation of a decoded audio signal with high quality and low bit rate.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: November 27, 2012
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V., Voiceage Corporation
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Roch Lefebvre, Bruno Bessette, Jimmy Lapierre, Philippe Gournay, Redwan Salami
  • Publication number: 20120271644
    Abstract: An audio signal decoder includes a transform domain path configured to obtain a time-domain representation of a portion of an audio content on the basis of a first set of spectral coefficients, a representation of an aliasing-cancellation stimulus signal and a plurality of linear-prediction-domain parameters. The transform domain path applies a spectrum shaping to the first set of spectral coefficients to obtain a spectrally-shaped version thereof. The transform domain path obtains a time-domain representation of the audio content on the basis of the spectrally-shaped version of the first set of spectral coefficients. The transform domain path includes an aliasing-cancellation stimulus filter to filter the aliasing-cancellation stimulus signal in dependence on at least a subset of the linear-prediction-domain parameters.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 25, 2012
    Inventors: Bruno Bessette, Max Neuendorf, Ralf Geiger, Philippe Gournay, Roch Lefebvre, Bernhard Grill, Jeremie Lecomte, Stefan Bayer, Nikolaus Rettelbach, Lars Villemoes, Redwan Salami, Albertus C. Den Brinker
  • Patent number: 8296159
    Abstract: An apparatus calculates a number of spectral envelopes to be derived by a spectral band replication (SBR) encoder, wherein the SBR encoder is adapted to encode an audio signal using a plurality of sample values within a predetermined number of subsequent time portions in an SBR frame extending from an initial time to a final time, the predetermined number of subsequent time portions being arranged in a time sequence given by the audio signal. The apparatus has a decision value calculator for determining a decision value, the decision value measuring a deviation in spectral energy distributions of a pair of neighboring time portions. The apparatus further has a detector for detecting a violation of a threshold by the decision value and a processor for determining a first envelope border between the pair of neighboring time portions when the violation of the threshold is detected.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: October 23, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo
  • Publication number: 20120265540
    Abstract: An audio decoder for providing a decoded audio information includes a arithmetic decoder for providing a plurality of decoded spectral values on the basis of an arithmetically-encoded representation of the spectral values and a frequency-domain-to-time-domain converter for providing a time-domain audio representation using the decoded spectral values. The arithmetic decoder is configured to select a mapping rule describing a mapping of a code value onto a symbol code in dependence on a context state. The arithmetic decoder is configured to determine or modify the current context state in dependence on a plurality of previously-decoded spectral values. The arithmetic decoder is configured to detect a group of a plurality of previously-decoded spectral values, which fulfill, individually or taken together, a predetermined condition regarding their magnitudes, and to determine the current context state in dependence on a result of the detection. An audio encoder uses similar principles.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 18, 2012
    Inventors: Guillaume Fuchs, Vignesh Subbaraman, Nikolaus Rettelbach, Markus Multrus, Marc Gayer, Patrick Warmbold, Christian Griebel, Oliver Weiss
  • Publication number: 20120265541
    Abstract: An audio signal encoder includes a transform-domain path which obtains spectral coefficients and noise-shaping information on the basis of a portion of the audio content, and which windows a time-domain representation of the audio content and applies a time-domain-to-frequency-domain conversion. The audio signal decoder includes a CELP path to obtain a code-excitation information and a LPD parameter information. A converter applies a predetermined asymmetric analysis window in both if a current portion is followed by a subsequent portion to be encoded in the transform-domain mode or in the CELP mode. Aliasing cancellation information is selectively provided in the later case.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 18, 2012
    Inventors: Ralf Geiger, Markus Schnell, Jeremie Lecomte, Konstantin Schmidt, Guillaume Fuchs, Nikolaus Rettelbach
  • Publication number: 20120245947
    Abstract: A multi-mode audio signal decoder has a spectral value determinator to obtain sets of decoded spectral coefficients for a plurality of portions of an audio content and a spectrum processor configured to apply a spectral shaping to a set of spectral coefficients in dependence on a set of linear-prediction-domain parameters for a portion of the audio content encoded in a linear-prediction mode, and in dependence on a set of scale factor parameters for a portion of the audio content encoded in a frequency-domain mode. The audio signal decoder has a frequency-domain-to-time-domain converter configured to obtain a time-domain audio representation on the basis of a spectrally-shaped set of decoded spectral coefficients for a portion of the audio content encoded in the linear-prediction mode and for a portion of the audio content encoded in the frequency domain mode. An audio signal encoder is also described.
    Type: Application
    Filed: April 6, 2012
    Publication date: September 27, 2012
    Inventors: Max Neuendorf, Guillaume Fuchs, Nikolaus Rettelbach, Tom Baeckstroem, Jeremie Lecomte, Juergen Herre
  • Patent number: 8275626
    Abstract: An apparatus for decoding an encoded audio signal having first and second portions encoded in accordance with first and second encoding algorithms, respectively, BWE parameters for the first and second portions and a coding mode information indicating a first or a second decoding algorithm, includes first and second decoders, a BWE module and a controller. The decoders decode portions in accordance with decoding algorithms for time portions of the encoded signal to obtain decoded signals. The BWE module has a controllable crossover frequency and is configured for performing a bandwidth extension algorithm using the first decoded signal and the BWE parameters for the first portion, and for performing a bandwidth extension algorithm using the second decoded signal and the bandwidth extension parameter for the second portion. The controller controls the crossover frequency for the BWE module in accordance with the coding mode information.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: September 25, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo
  • Publication number: 20120010880
    Abstract: An apparatus for generating a representation of a bandwidth-extended signal on the basis of an input signal representation includes a phase vocoder configured to obtain values of a spectral domain representation of a first patch of the bandwidth-extended signal on the basis of the input signal representation. The apparatus also includes a value copier configured to copy a set of values of the spectral domain representation of the first patch, which values are provided by the phase vocoder, to obtain a set of values of a spectral domain representation of a second patch, wherein the second patch is associated with higher frequencies than the first patch. The apparatus is configured to obtain the representation of the bandwidth-extended signal using the values of the spectral domain representation of the first patch and the values of the spectral domain representation of the second patch.
    Type: Application
    Filed: April 1, 2010
    Publication date: January 12, 2012
    Inventors: Frederik Nagel, Max Neuendorf, Nikolaus Rettelbach, Jeremie Lecomte, Markus Multrus, Bernhard Grill, Sascha Disch
  • Publication number: 20110238425
    Abstract: An audio encoder for encoding an audio signal has a first coding branch, the first coding branch comprising a first converter for converting a signal from a time domain into a frequency domain. Furthermore, the audio encoder has a second coding branch comprising a second time/frequency converter. Additionally, a signal analyzer for analyzing the audio signal is provided. The signal analyzer, on the hand, determines whether an audio portion is effective in the encoder output signal as a first encoded signal from the first encoding branch or as a second encoded signal from a second encoding branch. On the other hand, the signal analyzer determines a time/frequency resolution to be applied by the converters when generating the encoded signals. An output interface includes, in addition to the first encoded signal and the second encoded signal, a resolution information identifying the resolution used by the first time/frequency converter and used by the second time/frequency converter.
    Type: Application
    Filed: April 6, 2011
    Publication date: September 29, 2011
    Inventors: Max Neuendorf, Stefan Bayer, Jérémie Lecomte, Guillaume Fuchs, Julien Robilliard, Nikolaus Rettelbach, Frederik Nagel, Ralf Geiger, Markus Multrus, Bernhard Grill, Philippe Gournay, Redwan Salami
  • Publication number: 20110216918
    Abstract: An apparatus for generating a bandwidth extended signal from an input signal includes a patch generator and a combiner. The input signal is represented for first and second bands by first and second resolution data, respectively, the second resolution being lower than the first. The patch generator generates first and second patches from the first band of the input signal according to first and second patching algorithms, respectively. A spectral density of the second patch generated using the second patching algorithm is higher than a spectral density of a first patch generated using the first patching algorithm. The combiner combines both patches and the first band of the input signal to obtain the bandwidth extended signal. The apparatus scales the input signal according to the first and second patching algorithms or scales the first and second patches, so that the bandwidth extended signal fulfills a spectral envelope criterion.
    Type: Application
    Filed: January 11, 2011
    Publication date: September 8, 2011
    Inventors: Frederik Nagel, Sascha Disch, Max Neuendorf, Stefan Bayer, Marc Gayer, Markus Lohwasser, Nikolaus Rettelbach, Ulrich Kraemer
  • Publication number: 20110200198
    Abstract: An audio encoder has a common preprocessing stage, an information sink based encoding branch such as spectral domain encoding branch, a information source based encoding branch such as an LPC-domain encoding branch and a switch for switching between these branches at inputs into these branches or outputs of these branches controlled by a decision stage. An audio decoder has a spectral domain decoding branch, an LPC-domain decoding branch, one or more switches for switching between the branches and a common post-processing stage for post-processing a time-domain audio signal for obtaining a post-processed audio signal.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Sascha Disch, Juergen Herre, Yoshikazu Yokotani, Stefan Wabnik, Gerald Schuller, Jens Hirschfeld
  • Publication number: 20110200125
    Abstract: In a method for encoding a symbol it is determined whether the symbol can be encoded by a codeword of a first codebook. In case this is true, the appropriate codeword for the symbol is selected from the first codebook. Otherwise, a codeword is selected from the first codebook indicating that the symbol cannot be encoded by a codeword of the first codebook and the symbol is split into a plurality of first sub-symbols and for at least one of the first sub-symbols a codeword is selected from a second codebook. Also a corresponding method for decoding is described.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Markus Multrus, Nikolaus Rettelbach, Stefan Bayer, Bernhard Grill, Manuel Jander
  • Publication number: 20110202352
    Abstract: An apparatus for generating bandwidth extension output data for an audio signal has a noise floor measurer, a signal energy characterizer and a processor. The audio signal has components in a first frequency band and components in a second frequency band, the bandwidth extension output data are adapted to control a synthesis of the components in the second frequency band. The noise floor measurer measures noise floor data of the second frequency band for a time portion of the audio signal. The signal energy characterizer derives energy distribution data, the energy distribution data characterizing an energy distribution in a spectrum of the time portion of the audio signal. The processor combines the noise floor data and the energy distribution data to obtain the bandwidth extension output data.
    Type: Application
    Filed: January 11, 2011
    Publication date: August 18, 2011
    Inventors: Max Neuendorf, Bernhard Grill, Ulrich Kraemer, Markus Multrus, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Markus Lohwasser, Marc Gayer, Manuel Jander, Virgilio Bacigalupo