Patents by Inventor Nileshbhai J. Shah

Nileshbhai J. Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240283303
    Abstract: A wireless charging mat and method of operating the same. The wireless charging mat includes a detection system configured to determine a location and an orientation of an electronic device on the wireless charging mat. The location and orientation are determined based on detected locations of one or more structural features of the electronic device. The wireless charging mat is operated according to the detected location and orientation.
    Type: Application
    Filed: April 17, 2024
    Publication date: August 22, 2024
    Inventors: Chad A. Bossetti, Christopher S. Graham, David W. Ritter, Todd K. Moyer, Steven G. Herbst, Shimon Elkayam, Nileshbhai J. Shah, Stephen C. Terry, Zaki Moussaoui
  • Patent number: 12047088
    Abstract: A data processing system can include a first IC including one or more A/D converters that receive analog inputs from one or more sensors and generate corresponding digital data, a second IC including one or more processing elements that operate on the digital data, and communication circuitry, coupled between the one or more A/D converters and processing elements, that includes a packetizer on the first IC that receives samples and sample data from the one or more A/D converters and assembles each sample and corresponding sample data into a packet, a primary physical interface on the first IC that communicates the packet to a secondary physical interface on the second IC, and a de-packetizer that on the second IC that receives the packet, de-packetizes it, and delivers the sample and sample data to the one or more processing elements.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: July 23, 2024
    Assignee: Apple Inc.
    Inventors: Jose V Santos Martinez, Yongxuan Hu, Nileshbhai J Shah
  • Patent number: 12003121
    Abstract: A wireless charging mat and method of operating the same. The wireless charging mat includes a detection system configured to determine a location and an orientation of an electronic device on the wireless charging mat. The location and orientation are determined based on detected locations of one or more structural features of the electronic device. The wireless charging mat is operated according to the detected location and orientation.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: June 4, 2024
    Assignee: Apple Inc.
    Inventors: Chad A. Bossetti, Christopher S. Graham, David W. Ritter, Todd K. Moyer, Steven G. Herbst, Shimon Elkayam, Nileshbhai J. Shah, Stephen C. Terry, Zaki Moussaoui
  • Patent number: 11764621
    Abstract: A wireless power transmitter can include an inverter that receives a DC input and generates an AC output to drive a wireless power transmit coil coupled to an output of the inverter as well as voltage and current sensors that measure the DC input. The wireless power transmitter can further include a power management accumulator including hardware that receives voltage and current samples from the voltage and current sensors and multiplies corresponding voltage and current samples to produce power samples and memory locations that store corresponding voltage, current, and power samples. The wireless power transmitter can still further include a programmable controller that controls switching devices of the inverter responsive at least in part to the voltage, current and power samples stored in the memory locations of the power management accumulator.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: September 19, 2023
    Assignee: Apple Inc.
    Inventors: Yongxuan Hu, Nileshbhai J. Shah, José V. Santos Martinez, Stephen C. Terry
  • Publication number: 20230198538
    Abstract: A data processing system can include a first IC including one or more A/D converters that receive analog inputs from one or more sensors and generate corresponding digital data, a second IC including one or more processing elements that operate on the digital data, and communication circuitry, coupled between the one or more A/D converters and processing elements, that includes a packetizer on the first IC that receives samples and sample data from the one or more A/D converters and assembles each sample and corresponding sample data into a packet, a primary physical interface on the first IC that communicates the packet to a secondary physical interface on the second IC, and a de-packetizer that on the second IC that receives the packet, de-packetizes it, and delivers the sample and sample data to the one or more processing elements.
    Type: Application
    Filed: June 1, 2022
    Publication date: June 22, 2023
    Inventors: Jose V Santos Martinez, Yongxuan Hu, Nileshbhai J Shah
  • Publication number: 20210359556
    Abstract: A wireless charging mat and method of operating the same. The wireless charging mat includes a detection system configured to determine a location and an orientation of an electronic device on the wireless charging mat. The location and orientation are determined based on detected locations of one or more structural features of the electronic device. The wireless charging mat is operated according to the detected location and orientation.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Inventors: Chad A. Bossetti, Christopher S. Graham, David W. Ritter, Todd K. Moyer, Steven G. Herbst, Shimon Elkayam, Nileshbhai J. Shah, Stephen C. Terry, Zaki Moussaoui
  • Patent number: 11159065
    Abstract: A wireless charging mat and method of operating the same. The wireless charging mat includes a detection system configured to determine a location and an orientation of an electronic device on the wireless charging mat. The location and orientation are determined based on detected locations of one or more structural features of the electronic device. The wireless charging mat is operated according to the detected location and orientation.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: October 26, 2021
    Assignee: Apple Inc.
    Inventors: Chad A. Bossetti, Christopher S. Graham, David W. Ritter, Todd K. Moyer, Steven G. Herbst, Shimon Elkayam, Nileshbhai J. Shah, Stephen C. Terry, Zaki Moussaoui
  • Publication number: 20190190324
    Abstract: A wireless charging mat and method of operating the same. The wireless charging mat includes a detection system configured to determine a location and an orientation of an electronic device on the wireless charging mat. The location and orientation are determined based on detected locations of one or more structural features of the electronic device. The wireless charging mat is operated according to the detected location and orientation.
    Type: Application
    Filed: September 20, 2017
    Publication date: June 20, 2019
    Inventors: Chad A. Bossetti, Christopher S. Graham, David W. Ritter, Todd K. Moyer, Steven G. Herbst, Shimon Elkayam, Nileshbhai J. Shah, Stephen C. Terry, Zaki Moussaoui
  • Patent number: 10063155
    Abstract: Various systems and methods are disclosed herein, which provide isolated systems with an auxiliary, multi-signal digital feedback loop for reporting a plurality of different potential fault conditions in an output system (e.g., output short circuit, output over-voltage, output under-voltage, output over temperature, etc.) to a Primary Controller in an input system. The signals may be sent according to any desired standardized (or proprietary) data transmission protocols. Use of a digital feedback loop allows the signals to be passed to the Primary Controller more quickly than is allowed by traditional analog feedback paths—and while using only a single optocoupler device for the transmission of all fault conditions. The techniques disclosed herein are applicable to any number of isolated systems that supply power to electronic systems such as: digital cameras, mobile phones, watches, personal data assistants (PDAs), portable music players, monitors, as well as desktop, laptop, and tablet computers.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 28, 2018
    Assignee: Apple Inc.
    Inventors: Behzad Mohtashemi, Asif Hussain, Manisha P. Pandya, Mohammad J. Navabi-Shirazi, Nileshbhai J. Shah
  • Patent number: 9673701
    Abstract: A power conversion circuit, such as a buck converter/regulator, includes a feedback loop operatively coupling the output voltage to the controller for the switching mechanism. The feedback loop includes an analog error amplifier that sources current to the controller when the output voltage falls below a predetermined reference voltage and sinks current from the controller when the output voltage rises above a predetermined reference voltage. The feedback loop further includes at least one of a sinking boost circuit that sinks additional current from the controller when the output voltage falls below a low voltage threshold or a sourcing boost circuit that sources additional current to the controller when the output voltage rises above a high voltage threshold. The boost circuits can include analog amplifiers, digital comparators, or a combination thereof.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: June 6, 2017
    Assignee: Apple Inc.
    Inventors: Behzad Mohtashemi, Asif Hussain, Manisha P. Pandya, Mohammad J. Navabi-Shirazi, Nileshbhai J. Shah
  • Publication number: 20160329820
    Abstract: Various systems and methods are disclosed herein, which provide isolated systems with an auxiliary, multi-signal digital feedback loop for reporting a plurality of different potential fault conditions in an output system (e.g., output short circuit, output over-voltage, output under-voltage, output over temperature, etc.) to a Primary Controller in an input system. The signals may be sent according to any desired standardized (or proprietary) data transmission protocols. Use of a digital feedback loop allows the signals to be passed to the Primary Controller more quickly than is allowed by traditional analog feedback paths—and while using only a single optocoupler device for the transmission of all fault conditions. The techniques disclosed herein are applicable to any number of isolated systems that supply power to electronic systems such as: digital cameras, mobile phones, watches, personal data assistants (PDAs), portable music players, monitors, as well as desktop, laptop, and tablet computers.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 10, 2016
    Inventors: Behzad Mohtashemi, Asif Hussain, Manisha P. Pandya, Mohammad J. Navabi-Shirazi, Nileshbhai J. Shah
  • Publication number: 20160276928
    Abstract: A power conversion circuit, such as a buck converter/regulator, includes a feedback loop operatively coupling the output voltage to the controller for the switching mechanism. The feedback loop includes an analog error amplifier that sources current to the controller when the output voltage falls below a predetermined reference voltage and sinks current from the controller when the output voltage rises above a predetermined reference voltage. The feedback loop further includes at least one of a sinking boost circuit that sinks additional current from the controller when the output voltage falls below a low voltage threshold or a sourcing boost circuit that sources additional current to the controller when the output voltage rises above a high voltage threshold. The boost circuits can include analog amplifiers, digital comparators, or a combination thereof.
    Type: Application
    Filed: February 22, 2016
    Publication date: September 22, 2016
    Inventors: Behzad Mohtashemi, Asif Hussain, Manisha P. Pandya, Mohammad J. Navabi-Shirazi, Nileshbhai J. Shah