Patents by Inventor Ning Zhou

Ning Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200392582
    Abstract: The present invention relates to a hierarchical model for detecting colorectal tumors and an application thereof, wherein the model grades the change of an imprinted gene in a colorectal tumor by means of calculating the defect expression amount of the imprinted gene, copy number variation expression amount of the imprinted gene and total expression amount of the imprinted gene. The described detection model and device visually express the performance of imprinting defect in the tissue and cell samples of a colorectal tumor patient, and detect the change in an imprinted gene objectively, visually, early and accurately by means of the method of in situ labeling for the imprinted gene. In addition, the detection model and device may provide quantitative models, which makes a significant contribution to the diagnosis of colorectal tumors.
    Type: Application
    Filed: August 30, 2018
    Publication date: December 17, 2020
    Applicant: Lisen Imprinting Diagnostics, Inc.
    Inventors: Tong CHENG, Ning ZHOU
  • Patent number: 10821512
    Abstract: An additive manufacturing system includes a powder bed and at least one energy source configured to produce at least one energy beam for forming a build layer of a component from the powder bed. The additive manufacturing system further includes a computing device coupled to the at least one energy source. The computing device includes a processor and a memory device. The memory device includes instructions configured to cause the computing device to execute a manufacturing plan for manufacturing the component, receive component thermal data corresponding to at least a portion of the component during manufacturing of the component, and control the at least one energy beam in response to receiving the component thermal data to produce a predetermined microstructure within the portion of the component.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: November 3, 2020
    Assignee: General Electric Company
    Inventors: Lang Yuan, Ning Zhou
  • Patent number: 10759980
    Abstract: A polymerizable pre-adhesive composition includes packaging material and a packaged pre-adhesive reactive mixture sealed within the packaging material. The packaging material includes: a semicrystalline polylactic acid (PLA); a polyvinyl acetate (PVAc); and a plasticizer; wherein the PLA/PVAc-containing packaging material has a single Tg of less than 25° C. and a normalized Haze value of less than 10% per 25 microns.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 1, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Ning Zhou, Thomas E. Augustine, Thomas Q. Chastek, Derek J. Dehn, Anish Kurian
  • Publication number: 20200263063
    Abstract: A polymerizable pre-adhesive composition includes packaging material and a packaged pre-adhesive reactive mixture sealed within the packaging material. The packaging material includes: a semicrystalline polylactic acid (PLA); a polyvinyl acetate (PVAc); and a plasticizer; wherein the PLA/PVAc-containing packaging material has a single Tg of less than 25° C. and a normalized Haze value of less than 10% per 25 microns.
    Type: Application
    Filed: December 2, 2016
    Publication date: August 20, 2020
    Inventors: Ning Zhou, Thomas E. Augustine, Thomas Q. Chastek, Derek J. Dehn, Anish Kurian
  • Publication number: 20200255890
    Abstract: A model and an application thereof, the model being used for detecting a benign and malignant degree of a tumor. The model grades a change of an imprinted gene in a tumor by calculating a deletion expression quantity of the imprinted gene and a copy number abnormal expression quantity of the imprinted gene. The detection model and device in the present invention presents the expression of loss of imprinting in a sample of a tumor patient in a direct way for the first time; based on an imprinted gene in situ labeling method, a change of an imprinted gene is detected objectively, directly, early, and precisely, and a quantitative model can be provided, to make a great contribution to molecular pathology diagnosis.
    Type: Application
    Filed: May 21, 2018
    Publication date: August 13, 2020
    Inventors: Tong Cheng, Ning Zhou
  • Publication number: 20200180297
    Abstract: A method of method of forming or repairing a superalloy article having a columnar or equiaxed or directionally solidified or amorphous or single crystal microstructure includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array corresponding to a pattern of a layer of the article onto a powder bed of the superalloy to form a melt pool; and controlling a temperature gradient and a solidification velocity of the melt pool to form the columnar or single crystal microstructure.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 11, 2020
    Inventors: William Thomas CARTER, Marshall Gordon JONES, Lang YUAN, Ning ZHOU, Steven Jude DUCLOS
  • Publication number: 20200157336
    Abstract: A composition is described comprising semicrystalline polylactic acid polymer; polyvinyl acetate polymer having a glass transition temperature (Tg) of at least 25° C.; plasticizer; and optionally amorphous polylactic acid polymer. In another embodiment the composition further comprises nucleating agent. Also described are films comprising the composition as well as articles, such as a tape or sheet, comprising the film described herein and a layer of pressure sensitive adhesive disposed on the film.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventors: Ning Zhou, Robert S. Clough, Derek J. Dehn, Jeffrey P. Kalish, William W. Merrill, Kevin M. Lewandowski, Jayant Chakravarty
  • Patent number: 10640858
    Abstract: A method for preparing an improved article including a nickel-based superalloy is presented. The method includes heat-treating a workpiece including a nickel-based superalloy at a temperature above the gamma-prime solvus temperature of the nickel-based superalloy and cooling the heat-treated workpiece with a cooling rate less than 50 degrees Fahrenheit/minute from the temperature above the gamma-prime solvus temperature of the nickel-based superalloy so as to obtain a cooled workpiece. The cooled workpiece includes a coprecipitate of a gamma-prime phase and a gamma-double-prime phase, wherein the gamma-prime phase of the coprecipitate has an average particle size less than 250 nanometers. An article having a minimum dimension greater than 6 inches is also presented. The article includes a material having a coprecipitate of a gamma-prime phase and a gamma-double-prime phase, wherein the gamma-prime phase of the coprecipitate has an average particle size less than 250 nanometers.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: May 5, 2020
    Assignee: General Electric Company
    Inventors: Andrew Joseph Detor, Richard DiDomizio, Timothy Hanlon, Chen Shen, Ning Zhou
  • Publication number: 20200093129
    Abstract: This invention relates in part to soybean event pDAB8264.44.06.1 and includes a novel expression cassettes and transgenic inserts comprising multiple traits conferring resistance to glyphosate, aryloxyalkanoate, and glufosinate herbicides. This invention also relates in part to methods of controlling resistant weeds, plant breeding and herbicide tolerant plants. In some embodiments, the event sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. This invention further relates in part to endpoint TaqMan PCR assays for the detection of Event pDAB8264.44.06.1 in soybeans and related plant material. Some embodiments can perform high throughput zygosity analysis of plant material and other embodiments can be used to uniquely identify the zygosity of and breed soybean lines comprising the event of the subject invention. Kits and conditions useful in conducting these assays are also provided.
    Type: Application
    Filed: June 7, 2019
    Publication date: March 26, 2020
    Inventors: Yunxing C. Cui, Thomas Hoffman, Ning Zhou, Stephen N. Novak, Julissa Colon, Dawn M. Parkhurst, Sandra G. Toledo, Terry R. Wright, Sean M. Russell, Bruce Held, Vaithilingam Sekar
  • Patent number: 10577494
    Abstract: A composition is described comprising semicrystalline polylactic acid polymer; polyvinyl acetate polymer having a glass transition temperature (Tg) of at least 25 C; plasticizer; and optionally amorphous polylactic acid polymer. In another embodiment the composition further comprises nucleating agent. Also described are films comprising the composition as well as articles, such as a tape or sheet, comprising the film described herein and a layer of pressure sensitive adhesive disposed on the film.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: March 3, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Ning Zhou, Robert S. Clough, Derek J. Dehn, Jeffrey P. Kalish, William W. Merrill, Kevin M. Lewandowski, Jayant Chakravarty
  • Patent number: 10532556
    Abstract: A method of method of forming or repairing a superalloy article having a columnar or equiaxed or directionally solidified or amorphous or single crystal microstructure includes emitting a plurality of laser beams from selected fibers of a diode laser fiber array corresponding to a pattern of a layer of the article onto a powder bed of the superalloy to form a melt pool; and controlling a temperature gradient and a solidification velocity of the melt pool to form the columnar or single crystal microstructure.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: January 14, 2020
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Marshall Gordon Jones, Lang Yuan, Ning Zhou, Steven Jude Duclos
  • Patent number: 10455834
    Abstract: Soybean event 9582.816.15.1 comprises genes encoding Cry1 F, Cry1 Ac (synpro), and PAT, affording insect resistance and herbicide tolerance to soybean crops containing the event, and enabling methods for crop protection and protection of stored products. Embodiments of the present disclosure relate to a new insect resistant and herbicide tolerant transgenic soybean transformation event, designated soybean event pDAB9582.816.15.1, comprising cry1 F v3 (cry1 F), cry1 Ac synpro (cry1 Ac) and pat v6 (pat), as described herein, inserted into a specific site within the genome of a soybean cell. Representative soybean seed has been deposited with American Type Culture Collection (ATCC) with the Accession No. ATCC Deposit No. PTA-12588. The DNA of soybean plants containing this event includes the junction/flanking sequences described herein that characterize the location of the inserted DNA within the soybean genome.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: October 29, 2019
    Assignee: Dow AgroSciences LLC
    Inventors: Nathan Bard, Gregory A. Bradfisch, Yunxing Cory Cui, James E. Dripps, Thomas Hoffman, Dayakar Pareddy, Dawn M. Parkhurst, Sandra G. Toledo, Barry Wiggins, Ning Zhou, Aaron T. Woosley
  • Patent number: 10450549
    Abstract: The present disclosure relates to the use of a grass-active herbicide postemergently applied to AAD1-transformed turfgrasses to selectively control grass weeds in a turf grass crop. Also described is the use of AAD1 as a selectable marker in the production of transgenic turfgrass.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: October 22, 2019
    Assignee: Dow AgroSciences LLC
    Inventors: Carla N. Yerkes, Barbara A. Zilinskas, Donald J. Merlo, Terry R. Wright, Justin Lira, Nicole Arnold, Gary D. Thompson, Ning Zhou, Andrew Worden
  • Publication number: 20190300491
    Abstract: A salt of a quinazoline derivative (N-[4-(3-chlorine-4-fluoanilino)]-7-(3-morpholinepropanol)-6-(2-fluoroacrylamide)-quinazoline, the structure thereof is as represented by formula I). Compared with a known quinazoline derivative, the salt of the quinazoline derivative has one or more improved properties and at least has better water solubility, wherein a citrate, a benzene sulfonate, and an ethanedisulphonate thereof further have better crystallinity and are not easy to absorb moisture.
    Type: Application
    Filed: September 22, 2017
    Publication date: October 3, 2019
    Applicant: SHANGHAI PHARMACEUTICALS HOLDING CO., LTD.
    Inventors: Guangxin XIA, Di LI, Ning ZHOU, Ao CHEN, Liang ZHAO, Jiansheng HAN, Yanjun LIU
  • Patent number: 10415046
    Abstract: The present invention claims methods for the stable integration of exogenous DNA into a specific locus, E32, in the maize genome through the use of zinc finger nucleases. Maize plants and plant parts that were transformed by the methods of the invention are claimed. The invention is useful for creating desirable traits such as herbicide resistance, herbicide tolerance, insect resistance, insect tolerance, disease resistance, disease tolerance, stress tolerance, and stress resistance in maize The E32 locus represents a superior site for inserting foreign genes because native agronomic phenotypes are not disturbed.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: September 17, 2019
    Assignee: Dow AgroSciences LLC
    Inventors: W. Michael Ainley, James W. Bing, David R. Corbin, Steven L. Evans, Joseph F. Petolino, Lakshmi Sastry-Dent, Steven A. Thompson, Steven R. Webb, Mary E. Welter, Ning Zhou
  • Patent number: 10400250
    Abstract: This invention relates in part to soybean event pDAB8264.44.06.1 and includes a novel expression cassettes and transgenic inserts comprising multiple traits conferring resistance to glyphosate, aryloxyalkanoate, and glufosinate herbicides. This invention also relates in part to methods of controlling resistant weeds, plant breeding and herbicide tolerant plants. In some embodiments, the event sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. This invention further relates in part to endpoint TaqMan PCR assays for the detection of Event pDAB8264.44.06.1 in soybeans and related plant material. Some embodiments can perform high throughput zygosity analysis of plant material and other embodiments can be used to uniquely identify the zygosity of and breed soybean lines comprising the event of the subject invention. Kits and conditions useful in conducting these assays are also provided.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: September 3, 2019
    Assignees: Dow AgroSciences LLC, MS Technologies, L.L.C.
    Inventors: Yunxing C. Cui, Thomas Hoffman, Ning Zhou, Stephen N. Novak, Julissa Colon, Dawn M. Parkhurst, Sandra G. Toledo, Terry R. Wright, Sean M. Russell, Bruce Held, Vaithilingam Sekar
  • Publication number: 20190256677
    Abstract: Foam compositions are provided including a polylactic acid polymer; second (e.g., polyvinyl acetate) polymer having a glass transition temperature (Tg) of at least 25° C.; and plasticizer. Also described are articles comprising the foam compositions, such as a sheet or hearing protection article. Methods of making and using the foam compositions are further described herein.
    Type: Application
    Filed: June 14, 2017
    Publication date: August 22, 2019
    Inventors: Joshua M. Fishman, Caitlin E. Meree, Ning Zhou, Derek J. Dehn, Jacob D. Young, Jeffrey O. Emslander, Bradley L. Givot, Aaron T. Hedegaard, Justin M. Bolton, Terry R. Hobbs, Mahfuza B. Ali, Robert C. Coffin, Brant U. Kolb, Paul D. Pennington, Jimmie R. Baran, Jr., Duane D. Fansler, Ying Lin
  • Publication number: 20190233904
    Abstract: This invention relates in part to plant breeding and herbicide tolerant plants. This invention includes a novel aad-1 transformation event in corn plants comprising a polynucleotide sequence, as described herein, inserted into a specific site within the genome of a corn cell. In some embodiments, said event/polynucleotide sequence can be “stacked” with other traits, including, for example, other herbicide tolerance gene(s) and/or insect-inhibitory proteins. Additionally, the subject invention provides assays for detecting the presence of the subject event in a sample (or corn grain, for example). The assays can be based on the DNA sequence of the recombinant construct, inserted into the corn genome, and on the genomic sequences flanking the insertion site. Kits and conditions useful in conducting the assays are also provided.
    Type: Application
    Filed: February 19, 2019
    Publication date: August 1, 2019
    Inventors: Yunxing Cory CUI, Jill BRYAN, Donald MAUM, Greg GILLES, Terry WRIGHT, Jennifer HAMILTON, Nicole ARNOLD, Nathan VanOpdorp, Tina KAISER, Ning ZHOU
  • Publication number: 20190218423
    Abstract: An article is described such as a tape or sheet, comprising a PLA-based film and a layer of (e.g. pressure sensitive) adhesive disposed on the film. The PLA-based film comprises a semicrystalline polylactic acid polymer; a second polymer such as polyvinyl acetate polymer having a glass transition temperature (Tg) of at least 25° C.; and plasticizer. The tape or sheet may further comprises a low adhesion backsize or a release liner. The article can be suitable for various end-uses. In one embodiment, the tape is a paint masking tape. In another embodiment, the tape is a floor marking tape.
    Type: Application
    Filed: December 5, 2016
    Publication date: July 18, 2019
    Inventors: Joseph T. Bartusiak, Ning Zhou, Derek J. Dehn, Jeffrey O. Emslander, Corinne E. Lipscomb, Jayshree Seth, Jeffrey A. Carlson
  • Patent number: 10344322
    Abstract: The present disclosure provides methods for detecting and identifying plant events that contain precision targeted genomic loci, and plants and plant cells comprising such targeted genomic loci. The method can be deployed as a high throughput process utilized for screening the intactness or disruption of a targeted genomic loci and optionally for detecting a donor DNA polynucleotide insertion at the targeted genomic loci. The methods are readily applicable for the identification of plant events produced via a targeting method which results from the use of a site specific nuclease.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: July 9, 2019
    Assignee: Dow AgroSciences LLC
    Inventors: Lakshmi Sastry-Dent, Matthew A. Simpson, Zehui Cao, Wei Chen, Ning Zhou, Steven R. Webb