Patents by Inventor Niraj K. Jha

Niraj K. Jha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220240864
    Abstract: According to various embodiments, a machine-learning based system for diabetes analysis is disclosed. The system includes one or more processors configured to interact with a plurality of wearable medical sensors (WMSs). The processors are configured to receive physiological data from the WMSs and demographic data from a user interface. The processors are further configured to train at least one neural network based on a grow-and-prune paradigm to generate at least one diabetes inference model. The neural network grows at least one of connections and neurons based on gradient information and prunes away at least one of connections and neurons based on magnitude information. The processors are also configured to output a diabetes-based decision by inputting the received physiological data and demographic data into the generated diabetes inference model.
    Type: Application
    Filed: June 16, 2020
    Publication date: August 4, 2022
    Applicant: The Trustees of Princeton University
    Inventors: Hongxu Yin, Bilal Mukadam, Xiaoliang Dai, Niraj K. Jha
  • Publication number: 20220222534
    Abstract: According to various embodiments, a method for generating a compact and accurate neural network for a dataset that has initial data and is updated with new data is disclosed. The method includes performing a first training on the initial neural network architecture to create a first trained neural network architecture. The method additionally includes performing a second training on the first trained neural network architecture when the dataset is updated with new data to create a second trained neural network architecture. The second training includes growing one or more connections for the new data based on a gradient of each connection, growing one or more connections for the new data and the initial data based on a gradient of each connection, and iteratively pruning one or more connections based on a magnitude of each connection until a desired neural network architecture is achieved.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 14, 2022
    Applicant: The Trustees of Princeton University
    Inventors: Xiaoliang DAI, Hongxu YIN, Niraj K. JHA
  • Publication number: 20220201014
    Abstract: According to various embodiments, a method for detecting security vulnerabilities in at least one of cyber-physical systems (CPSs) and Internet of Things (IoT) devices is disclosed. The method includes constructing an attack directed acyclic graph (DAG) from a plurality of regular expressions, where each regular expression corresponds to control-data flow for a known CPS/IoT attack. The method further includes performing a linear search on the attack DAG to determine unexploited CPS/IoT attack vectors, where a path in the attack DAG that does not represent a known CPS/IoT attack vector represents an unexploited CPS/IoT attack vector. The method also includes applying a trained machine learning module to the attack DAG to predict new CPS/IoT vulnerability exploits. The method further includes constructing a defense DAG configured to protect against the known CPS/IoT attacks, the unexploited CPS/IoT attacks, and the new CPS/IoT vulnerability exploits.
    Type: Application
    Filed: February 25, 2020
    Publication date: June 23, 2022
    Applicant: The Trustees of Princeton University
    Inventors: Tanujay Saha, Najwa Aaraj, Niraj K. Jha
  • Publication number: 20220036150
    Abstract: According to various embodiments, a method for generating a compact and accurate neural network for a dataset is disclosed. The method includes providing an initial neural network architecture; performing a dataset modification on the dataset, the dataset modification including reducing dimensionality of the dataset; performing a first compression step on the initial neural network architecture that results in a compressed neural network architecture, the first compression step including reducing a number of neurons in one or more layers of the initial neural network architecture based on a feature compression ratio determined by the reduced dimensionality of the dataset; and performing a second compression step on the compressed neural network architecture, the second compression step including one or more of iteratively growing connections, growing neurons, and pruning connections until a desired neural network architecture has been generated.
    Type: Application
    Filed: July 12, 2019
    Publication date: February 3, 2022
    Applicant: The Trustees of Princeton University
    Inventors: Shayan HASSANTABAR, Zeyu WANG, Niraj K. JHA
  • Publication number: 20210357741
    Abstract: In a system and method for processing detected signals at a detector using a processor, a set of data is converted into a compressed set of data using a compressive sensing component controlled via a processor, the compressed set of data is transformed into a vector and the vector is filtered using a machine learning component controlled via the processor, the filtered vector is encrypted using an encryption component controlled via the processor, and the filtered vector is integrity protected using an integrity protection component controlled via the processor.
    Type: Application
    Filed: January 24, 2018
    Publication date: November 18, 2021
    Applicant: The Trustees of Princeton University
    Inventor: Niraj K. Jha
  • Publication number: 20210182683
    Abstract: According to various embodiments, a method for generating one or more optimal neural network architectures is disclosed. The method includes providing an initial seed neural network architecture and utilizing sequential phases to synthesize the neural network until a desired neural network architecture is reached. The phases include a gradient-based growth phase and a magnitude-based pruning phase.
    Type: Application
    Filed: October 25, 2018
    Publication date: June 17, 2021
    Applicant: The Trustees of Princeton University
    Inventors: Xiaoliang DAI, Hongxu YIN, Niraj K. JHA
  • Publication number: 20210133540
    Abstract: According to various embodiments, a method for generating an optimal hidden-layer long short-term memory (H-LSTM) architecture is disclosed. The H-LSTM architecture includes a memory cell and a plurality of deep neural network (DNN) control gates enhanced with hidden layers. The method includes providing an initial seed H-LSTM architecture, training the initial seed H-LSTM architecture by growing one or more connections based on gradient information and iteratively pruning one or more connections based on magnitude information, and terminating the iterative pruning when training cannot achieve a predefined accuracy threshold.
    Type: Application
    Filed: March 14, 2019
    Publication date: May 6, 2021
    Applicant: The Trustees of Princeton University
    Inventors: Xiaoliang DAI, Hongxu YIN, Niraj K. JHA
  • Patent number: 10986994
    Abstract: According to various embodiments, a stress detection and alleviation (SoDA) system for a user is disclosed. The system includes a SoDA device configured with one or more processors that receive wearable medical sensor (WMS) data from a plurality of WMSs. The processors are programmed to remove one or more artifacts from the WMS data, extract a set of features from the WMS data, remove correlated features from the extracted features to obtain a reduced set of features, classify the reduced set of features in order to determine whether the user is stressed, and generate a response based on whether the user is stressed.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: April 27, 2021
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Ayten Ozge Akmandor, Niraj K. Jha
  • Patent number: 10798238
    Abstract: According to various embodiments, a method for locating the user of a mobile device without accessing global position system (GPS) data is disclosed. The method includes determining the last location that the user was connected to a wireless network. The method further includes compiling publicly-available auxiliary information related to the last location. The method additionally includes classifying an activity of the user to driving, traveling on a plane, traveling on a train, or walking. The method also includes estimating the location of the user based on sensory and non-sensory data of the mobile device particular to the activity classification of the user.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: October 6, 2020
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Arsalan Mosenia, Xiaoliang Dai, Prateek Mittal, Niraj K. Jha
  • Patent number: 10722719
    Abstract: According to some embodiments, a system for securing communications between an implantable wearable medical device (IWMD) and an external device (ED) is disclosed. The system includes a wireless radio frequency (RF) channel configured for communication between the IWMD and the ED. The system further includes a vibration-based side channel configured for verifying communication between the IWMD and the ED such that the RF channel is activated only when the IWMD detects a vibration signal generated by an ED.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: July 28, 2020
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Younghyun Kim, Woo Suk Lee, Vijay Raghunathan, Niraj K. Jha, Anand Raghunathan
  • Patent number: 10652237
    Abstract: A user authentication system for an electronic device for use with a plurality of wireless wearable medical sensors (WMSs) and a wireless base station that receives a biomedical data stream (biostream) from each WMS. The system includes a BioAura engine located on a server, the server has a wireless transmitter/receiver with receive buffers that store the plurality of biostreams, the BioAura engine has a look up stage and a classifier, the classifier generates an authentication output based on the plurality of biostreams, the authentication output authenticates the user's access to the electronic device. The wireless base station has a transmitter/receiver having receive buffers that store the biomedical data from each WMS, the wireless base station has a communication engine that retrieves the biostream from each WMS and transmits the plurality of biostreams to the server.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: May 12, 2020
    Assignees: THE TRUSTEES OF PRINCETON UNIVERSITY, INDIAN STATISTICAL INSTITUTE, PURDUE RESEARCH FOUNDATION
    Inventors: Arsalan Mosenia, Susmita Sur-Kolay, Anand Raghunathan, Niraj K. Jha
  • Publication number: 20190374160
    Abstract: According to various embodiments, a hierarchical health decision support system (HDSS) configured to receive data from one or more wearable medical sensors (WMSs) is disclosed. The system includes a clinical decision support system, which includes a diagnosis engine configured to generate diagnostic suggestions based on the data received from the WMSs. The HDSS is configured with a plurality of tiers to sequentially model general healthcare from daily health monitoring, initial clinical checkup, detailed clinical examination, and postdiagnostic treatment.
    Type: Application
    Filed: December 29, 2017
    Publication date: December 12, 2019
    Applicant: The Trustees of Princeton University
    Inventors: Hongxu Yin, Niraj K. Jha
  • Patent number: 10506433
    Abstract: An implantable medical device (IMD) configured to communicate with an external device (ED). The ED supports two way RF communications and has a light source. The IMD includes a processor coupled to an optical detector, the processor is configured to verify that light is being received from the ED light source and that the ED is a trusted device, establishing a unidirectional optical channel from the ED to the IMD. An RF transceiver is coupled to the processor, the processor being configured permit two way RF communications with the ED only under a condition that the ED is verified as a trusted device. The processor may be configure to wake up periodically or aperiodically to check for the presence of light from the ED light source. The processor may be configured to detect a multi-bit message from the ED via the unidirectional optical channel. The multi-bit message may include a key.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: December 10, 2019
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Arsalan Mosenia, Niraj K. Jha
  • Publication number: 20190289125
    Abstract: According to various embodiments, a method for locating the user of a mobile device without accessing global position system (GPS) data is disclosed. The method includes determining the last location that the user was connected to a wireless network. The method further includes compiling publicly-available auxiliary information related to the last location. The method additionally includes classifying an activity of the user to driving, traveling on a plane, traveling on a train, or walking. The method also includes estimating the location of the user based on sensory and non-sensory data of the mobile device particular to the activity classification of the user.
    Type: Application
    Filed: October 13, 2017
    Publication date: September 19, 2019
    Applicant: The Trustees of Princeton University
    Inventors: Arsalan Mosenia, Xiaoliang Dai, Prateek Mittal, Niraj K. Jha
  • Patent number: 10135849
    Abstract: A medical device monitor (MedMon), method and computer readable medium is disclosed. The MedMon is configured to operate in a system having communications between a first medical device associated with a patient and a second device. The MedMon includes a receiver configured to snoop on communications between the first medical device and second device. An anomaly detector having a set of security polices is configured to detect an anomaly by analyzing the communications between the first medical device and second device for compliance with the security policies. A response generator configured to generate a response on a condition that an anomaly is detected. The response may be a warning message configured to warn the patient. The MedMon may include a transmitter configured to transmit the response. The response may be a jamming signal configured to disrupt communications between the first medical device and second device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 20, 2018
    Assignees: PURDUE RESEARCH FOUNDATION, THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Niraj K. Jha, Anand Raghunathan, Meng Zhang
  • Publication number: 20180322092
    Abstract: Embodiments of the application provide device, method and system for routing global assistant signals in a NoC. The device comprises: a signal distributing element having an associated intermediate router provided in a system for routing global assistant signals in a NoC which includes at least one intermediate router electrically interposed between a source router and a destination router, wherein the signal distributing element is configured to: based on a predetermined criterion, select either local global assistant signals generated by the associated intermediate router or upstream global assistant signals received from an upstream router of the associated intermediate router as current global assistant signals to be sent to a downstream router of the associated intermediate router.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 8, 2018
    Inventors: Zhiguo GE, Xianmin CHEN, Niraj K. JHA, Naxin ZHANG
  • Publication number: 20180184901
    Abstract: According to various embodiments, a stress detection and alleviation (SoDA) system for a user is disclosed. The system includes a SoDA device configured with one or more processors that receive wearable medical sensor (WMS) data from a plurality of WMSs. The processors are programmed to remove one or more artifacts from the WMS data, extract a set of features from the WMS data, remove correlated features from the extracted features to obtain a reduced set of features, classify the reduced set of features in order to determine whether the user is stressed, and generate a response based on whether the user is stressed.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 5, 2018
    Applicant: The Trustees of Princeton University
    Inventors: Ayten Ozge Akmandor, Niraj K. Jha
  • Publication number: 20180109946
    Abstract: An implantable medical device (IMD) configured to communicate with an external device (ED). The ED supports two way RF communications and has a light source. The IMD includes a processor coupled to an optical detector, the processor is configured to verify that light is being received from the ED light source and that the ED is a trusted device, establishing a unidirectional optical channel from the ED to the IMD. An RF transceiver is coupled to the processor, the processor being configured permit two way RF communications with the ED only under a condition that the ED is verified as a trusted device. The processor may be configure to wake up periodically or aperiodically to check for the presence of light from the ED light source. The processor may be configured to detect a multi-bit message from the ED via the unidirectional optical channel. The multi-bit message may include a key.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 19, 2018
    Applicant: The Trustees of Princeton University
    Inventors: Arsalan Mosenia, Niraj K. Jha
  • Publication number: 20180043168
    Abstract: According to some embodiments, a system for securing communications between an implantable wearable medical device (IWMD) and an external device (ED) is disclosed. The system includes a wireless radio frequency (RF) channel configured for communication between the IWMD and the ED. The system further includes a vibration-based side channel configured for verifying communication between the IWMD and the ED such that the RF channel is activated only when the IWMD detects a vibration signal generated by an ED.
    Type: Application
    Filed: February 12, 2016
    Publication date: February 15, 2018
    Applicants: THE TRUSTEES OF PRINCETON UNIVERSITY, PURDUE RESEARCH FOUNDATION
    Inventors: Younghyun Kim, Woo Suk Lee, Vijay Raghunathan, Niraj K. Jha, Anand Raghunathan
  • Patent number: 9735783
    Abstract: A field programmable gate array (FPGA) and method of reconfiguring a FPGA are disclosed. The FPGA includes a plurality of logic elements interconnected with reconfigurable switches and at least horizontal and vertical direct links A memory is coupled to the reconfigurable switches, the memory being configured to store at least two run time configurations. The reconfigurable switches are reconfigurable based on a selected run time configuration stored in the memory. The memory may be a nanoelectronic random access memory (RAM). The memory may be configured to store the at least two run time configurations for at least four logic elements. Each logic element may include a look-up-table (LUT), a flip-flop, inputs and outputs. Each logic element may include dedicated carry logic. At least four logic elements may be interconnected with diagonal direct links.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: August 15, 2017
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Ting-Jung Lin, Wei Zhang, Niraj K. Jha