Patents by Inventor Nitin K. Ingle

Nitin K. Ingle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150311089
    Abstract: Methods of selectively etching tungsten oxide relative to tungsten, silicon oxide, silicon nitride and/or titanium nitride are described. The methods include a remote plasma etch formed from a fluorine-containing precursor and/or hydrogen (H2). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten oxide. The plasmas effluents react with exposed surfaces and selectively remove tungsten oxide while very slowly removing other exposed materials. In some embodiments, the tungsten oxide selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 29, 2015
    Inventors: Sang Hyuk Kim, Dongqing Yang, Young S. Lee, Weon Young Jung, Sang-jin Kim, Ching-Mei Hsu, Anchuan Wang, Nitin K. Ingle
  • Patent number: 9165786
    Abstract: Methods of etching back an oxide-nitride-oxide (ONO) layer of a 3-d flash memory cell without breaking vacuum are described. The methods include recessing the two outer silicon oxide dielectric layers to expose the flanks of the thin silicon nitride layer. The silicon nitride layer is then etched back from all exposed sides to hasten the process on the same substrate processing mainframe. Both etching back the silicon oxide and etching back the silicon nitride use remotely excited fluorine-containing apparatuses attached to the same mainframe to facilitate performing both operations without an intervening atmospheric exposure. The process may also be reversed such that the silicon nitride is etched back first.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: October 20, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Vinod R. Purayath, Randhir Thakur, Nitin K. Ingle
  • Patent number: 9159606
    Abstract: Methods are described for forming “air gaps” between adjacent copper lines on patterned substrates. The air gaps may be located between copper lines on the same layer. A sacrificial patterned dielectric layer is used as a template to form a layer of copper by physical vapor deposition in a substrate processing system (i.e. a mainframe). Without breaking vacuum, the copper is redistributed into the gaps with a copper reflow process. Dielectric material from the template is removed, again in the same mainframe, using a remote fluorine etch process leaving the gapfill copper as the structural material. A conformal capping layer (such as silicon carbon nitride) is then deposited (e.g. by ALD) to seal the patterned substrate before removing the patterned substrate from the mainframe.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: October 13, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Vinod R. Purayath, Randhir Thakur, Nitin K. Ingle
  • Patent number: 9153442
    Abstract: Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: October 6, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Xinglong Chen, Zihui Li, Hiroshi Hamana, Zhijun Chen, Ching-Mei Hsu, Jiayin Huang, Nitin K. Ingle, Dmitry Lubomirsky, Shankar Venkataraman, Randhir Thakur
  • Publication number: 20150270366
    Abstract: Flash memory cells and methods of formation are described for flash memory cells having air gaps through which electrons may pass to alter the charge state of the floating gate. A dummy gate is initially deposited and a polysilicon gate is deposited on the dummy gate. A silicon oxide film is then deposited on the sides of the active area, the dummy gate and the polysilicon. The silicon oxide film holds the polysilicon in place while the dummy gate is selectively etched away. The dummy gate may be doped to increase etch rate. Formerly, silicon oxide was used as a dielectric barrier through which electrons were passed to charge and discharge the floating gate (polysilicon). Eliminating material in the dielectric barrier reduces the tendency to accumulate trapped charges during use and increase the lifespan of flash memory devices.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 24, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Vinod R. Purayath, Nitin K. Ingle
  • Patent number: 9136273
    Abstract: Flash memory cells and methods of formation are described for flash memory cells having air gaps through which electrons may pass to alter the charge state of the floating gate. A dummy gate is initially deposited and a polysilicon gate is deposited on the dummy gate. A silicon oxide film is then deposited on the sides of the active area, the dummy gate and the polysilicon. The silicon oxide film holds the polysilicon in place while the dummy gate is selectively etched away. The dummy gate may be doped to increase etch rate. Formerly, silicon oxide was used as a dielectric barrier through which electrons were passed to charge and discharge the floating gate (polysilicon). Eliminating material in the dielectric barrier reduces the tendency to accumulate trapped charges during use and increase the lifespan of flash memory devices.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: September 15, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Vinod R. Purayath, Nitin K. Ingle
  • Publication number: 20150249018
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a gas phase etch created from a remote plasma etch. The remote plasma excites a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. Reactants thereby produced etch the patterned heterogeneous structures to remove two separate regions of differing silicon oxide at different etch rates. The methods may be used to remove low density silicon oxide while removing less high density silicon oxide.
    Type: Application
    Filed: May 15, 2015
    Publication date: September 3, 2015
    Inventors: Seung H. Park, Yunyu Wang, Jingchun Zhang, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20150235863
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconi™ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
    Type: Application
    Filed: May 4, 2015
    Publication date: August 20, 2015
    Inventors: Zhijun Chen, Jingchun Zhang, Ching-Mei Hsu, Seung Park, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20150235865
    Abstract: Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
    Type: Application
    Filed: May 4, 2015
    Publication date: August 20, 2015
    Inventors: Anchuan Wang, Xinglong Chen, Zihui Li, Hiroshi Hamana, Zhijun Chen, Ching-Mei Hsu, Jiayin Huang, Nitin K. Ingle, Dmitry Lubomirsky, Shankar Venkataraman, Randhir Thakur
  • Patent number: 9111877
    Abstract: A method of etching exposed titanium oxide on heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flawed into a substrate processing region where the plasma effluents may combine with a nitrogen-containing precursor such as an amine (N:) containing precursor. Reactants thereby produced etch, the patterned heterogeneous structures with high titanium oxide selectivity while the substrate is at elevated temperature. Titanium oxide etch may alternatively involve supplying a fluorine-containing precursor and a source of nitrogen-and-hydrogen-containing precursor to the remote plasma. The methods may be used to remove titanium oxide while removing little or no low-K dielectric, polysilicon, silicon nitride or titanium nitride.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: August 18, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Seung Park, Mikhail Korolik, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20150214092
    Abstract: Methods are described for forming “air gaps” between adjacent copper lines on patterned substrates. The common name “air gap” will be used interchangeably the more technically accurate “gas pocket” and both reflect a variety of pressures and elemental ratios. The gas pockets may be one or more pores within dielectric material located between copper lines. Adjacent copper lines may be bordered by a lining layer and air gaps may extend from one lining layer on one copper line to the lining layer of an adjacent copper line. The gas pockets can have a dielectric constant approaching one, favorably reducing interconnect capacitance compared with typical low-K dielectric materials.
    Type: Application
    Filed: January 27, 2014
    Publication date: July 30, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Vinod R. Purayath, Nitin K. Ingle
  • Patent number: 9093371
    Abstract: Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: July 28, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Xinglong Chen, Zihui Li, Hiroshi Hamana, Zhijun Chen, Ching-Mei Hsu, Jiayin Huang, Nitin K. Ingle, Dmitry Lubomirsky, Shankar Venkataraman, Randhir Thakur
  • Patent number: 9093390
    Abstract: A method of etching silicon oxide from a trench is described which allows more homogeneous etch rates up and down the sides of the trench. One disclosed method includes a sequential introduction of (1) a hydrogen-containing precursor and then (2) a fluorine-containing precursor into a substrate processing region. The temperature of the substrate is low during each of the two steps in order to allow the reaction to proceed and form solid residue by-product. A second disclosed method reverses the order of steps (1) and (2) but still forms solid residue by-product. The solid residue by-product is removed by raising the temperature in a subsequent sublimation step regardless of the order of the two steps.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: July 28, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20150206764
    Abstract: Methods of selectively etching titanium oxide relative to silicon oxide, silicon nitride and/or other dielectrics are described. The methods include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor and/or a chlorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium oxide. The plasmas effluents react with exposed surfaces and selectively remove titanium oxide while very slowly removing other exposed materials. A direction sputtering pretreatment is performed prior to the remote plasma etch and enables an increased selectivity as well as a directional selectivity. In some embodiments, the titanium oxide etch selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 23, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Xikun WANG, Lin XU, Anchuan WANG, Nitin K. INGLE
  • Publication number: 20150179464
    Abstract: Methods of selectively etching tungsten relative to silicon-containing films (e.g. silicon oxide, silicon carbon nitride and (poly)silicon) as well as tungsten oxide are described. The methods include a remote plasma etch formed from a fluorine-containing precursor and/or hydrogen (H2). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten. The plasma effluents react with exposed surfaces and selectively remove tungsten while very slowly removing other exposed materials. Sequential and simultaneous methods are included to remove thin tungsten oxide which may, for example, result from exposure to the atmosphere.
    Type: Application
    Filed: February 9, 2015
    Publication date: June 25, 2015
    Inventors: Xikun Wang, Ching-Mei Hsu, Nitin K. Ingle, Zihui Li, Anchuan Wang
  • Patent number: 9064816
    Abstract: Methods of selectively etching tungsten oxide relative to tungsten, silicon oxide, silicon nitride and/or titanium nitride are described. The methods include a remote plasma etch formed from a fluorine-containing precursor and/or hydrogen (H2). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten oxide. The plasmas effluents react with exposed surfaces and selectively remove tungsten oxide while very slowly removing other exposed materials. In some embodiments, the tungsten oxide selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 23, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Sang Hyuk Kim, Dongqing Yang, Young S. Lee, Weon Young Jung, Sang-jin Kim, Ching-Mei Hsu, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20150170935
    Abstract: Methods of evenly etching tungsten liners from high aspect ratio trenches are described. The methods include ion bombardment of a patterned substrate having high aspect ratio trenches. The ion bombardment includes fluorine-containing ions and the ion bombardment may be stopped before breaking through the horizontal liner portion outside the trenches but near the opening of the trenches. The methods then include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten. The plasmas effluents react with exposed surfaces and remove tungsten from outside the trenches and on the sidewalls of the trenches. The plasma effluents pass through an ion suppression element positioned between the remote plasma and the substrate processing region.
    Type: Application
    Filed: March 17, 2014
    Publication date: June 18, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Xikun Wang, Jie Liu, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20150170920
    Abstract: Methods of etching two doped silicon portions at two different etch rates are described. An n-type silicon portion may be etched faster than a p-type silicon portion when both are exposed and present on the same substrate. The n-type silicon portion may be doped with phosphorus and the p-type silicon portion may be doped with boron. In one example, the n-type silicon portion is single crystal silicon and the p-type silicon portion is polycrystalline silicon (a.k.a. polysilicon). The p-type silicon portion may be a polysilicon floating gate in a flash memory cell and may be located above a gate silicon oxide which, in turn, is above an n-type active area single crystal silicon portion. The additional trimming of the n-type active area silicon portion may reduce the accumulation of trapped charges during use and increase the lifespan of flash memory devices.
    Type: Application
    Filed: March 31, 2014
    Publication date: June 18, 2015
    Inventors: Vinod R. Purayath, Anchuan Wang, Nitin K. Ingle
  • Patent number: 9040422
    Abstract: Methods are described herein for selectively etching titanium nitride relative to dielectric films, which may include, for example, alternative metals and metal oxides lacking in titanium and/or silicon-containing films (e.g. silicon oxide, silicon carbon nitride and low-K dielectric films). The methods include a remote plasma etch formed from a chlorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride. The plasma effluents react with exposed surfaces and selectively remove titanium nitride while very slowly removing the other exposed materials. The substrate processing region may also contain a plasma to facilitate breaking through any titanium oxide layer present on the titanium nitride. The plasma in the substrate processing region may be gently biased relative to the substrate to enhance removal rate of the titanium oxide layer.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: May 26, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Xikun Wang, Anchuan Wang, Nitin K. Ingle, Dmitry Lubomirsky
  • Patent number: 9034770
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a gas phase etch created from a remote plasma etch. The remote plasma excites a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor. Reactants thereby produced etch the patterned heterogeneous structures to remove two separate regions of differing silicon oxide at different etch rates. The methods may be used to remove low density silicon oxide while removing less high density silicon oxide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 19, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Seung H. Park, Yunyu Wang, Jingchun Zhang, Anchuan Wang, Nitin K. Ingle