Patents by Inventor Nitin K. Ingle

Nitin K. Ingle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170018439
    Abstract: Methods are described for etching metal layers that are difficult to volatize, such as cobalt, nickel, and platinum to form an etched metal layer with reduced surface roughness. The methods include pretreating the metal layer with a local plasma formed from a hydrogen-containing precursor. The pretreated metal layer is then reacted with a halogen-containing precursor to form a halogenated metal layer having a halogenated etch product. A carbon-and-nitrogen-containing precursor reacts with the halogenated etch product to form a volatile etch product that can be removed in the gas phase from the etched surface of the metal layer. The surface roughness may be reduced by performing one or more plasma treatments on the etching metal layer after a plurality of etching sequences. Surface roughness is also reduced by controlling the temperature and length of time the metal layer is reacting with the etchant precursors.
    Type: Application
    Filed: July 16, 2015
    Publication date: January 19, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Xikun Wang, David Cui, Anchuan Wang, Nitin K. Ingle
  • Patent number: 9540736
    Abstract: Provided are methods for etching films comprising transition metals which help to minimize higher etch rates at the grain boundaries of polycrystalline materials. Certain methods pertain to amorphization of the polycrystalline material, other pertain to plasma treatments, and yet other pertain to the use of small doses of halide transfer agents in the etch process.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: January 10, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Benjamin Schmiege, Nitin K. Ingle, Srinivas D. Nemani, Jeffrey W. Anthis, Xikun Wang, Jie Liu, David Benjaminson
  • Patent number: 9520303
    Abstract: Methods of selectively etching aluminum and aluminum layers from the surface of a substrate are described. The etch selectively removes aluminum materials relative to silicon-containing films such as silicon, polysilicon, silicon oxide, silicon carbon nitride, silicon oxycarbide and/or silicon nitride. The methods include exposing aluminum materials (e.g. aluminum) to remotely-excited chlorine (Cl2) in a substrate processing region. A remote plasma is used to excite the chlorine and a low electron temperature is maintained in the substrate processing region to achieve high etch selectivity. Aluminum oxidation may be broken through using a chlorine-containing precursor or a bromine-containing precursor excited in a plasma or using no plasma-excitation, respectively.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: December 13, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Xikun Wang, Anchuan Wang, Nitin K. Ingle
  • Patent number: 9514932
    Abstract: Methods are described for forming flowable carbon layers on a semiconductor substrate. A local excitation (such as a hot filament in hot wire CVD, a plasma in PECVD or UV light) may be applied as described herein to a silicon-free carbon-containing precursor containing a hydrocarbon to form a flowable carbon-containing film on a substrate. A remote excitation method has also been found to produce flowable carbon-containing films by exciting a stable precursor to produce a radical precursor which is then combined with unexcited silicon-free carbon-containing precursors in the substrate processing region.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 6, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Abhijit Basu Mallick, Nitin K. Ingle
  • Patent number: 9502258
    Abstract: A method of anisotropically dry-etching exposed substrate material on a patterned substrate is described. The patterned substrate has a gap formed in a single material made from, for example, a silicon-containing material or a metal-containing material. The method includes directionally ion-implanting the patterned structure to implant the bottom of the gap without implanting substantially the walls of the gap. Subsequently, a remote plasma is formed using a fluorine-containing precursor to etch the patterned substrate such that either (1) the walls are selectively etched relative to the floor of the gap, or (2) the floor is selectively etched relative to the walls of the gap. Without ion implantation, the etch operation would be isotropic owing to the remote nature of the plasma excitation during the etch process.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: November 22, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jun Xue, Ching-Mei Hsu, Zihui Li, Ludovic Godet, Anchuan Wang, Nitin K. Ingle
  • Patent number: 9496167
    Abstract: Methods of forming flash memory cells are described which incorporate air gaps for improved performance. The methods are useful for so-called “2-d flat cell” flash architectures. 2-d flat cell flash memory involves a reactive ion etch to dig trenches into multi-layers containing high work function and other metal layers. The methods described herein remove the metal oxide debris from the sidewalls of the multi-layer trench and then, without breaking vacuum, selectively remove shallow trench isolation (STI) oxidation which become the air gaps. Both the metal oxide removal and the STI oxidation removal are carried out in the same mainframe with highly selective etch processes using remotely excited fluorine plasma effluents.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: November 15, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Vinod R. Purayath, Randhir Thakur, Shankar Venkataraman, Nitin K. Ingle
  • Publication number: 20160314961
    Abstract: A method of removing an amorphous silicon/silicon oxide film stack from vias is described. The method may involve a remote plasma comprising fluorine and a local plasma comprising fluorine and a nitrogen-and-hydrogen-containing precursor unexcited in the remote plasma to remove the silicon oxide. The method may then involve a local plasma of inert species to potentially remove any thin carbon layer (leftover from the photoresist) and to treat the amorphous silicon layer in preparation for removal. The method may then involve removal of the treated amorphous silicon layer with several options possibly within the same substrate processing region. The bottom of the vias may then possess exposed single crystal silicon which is conducive to epitaxial single crystal silicon film growth. The methods presented herein may be particularly well suited for 3d NAND (e.g. VNAND) device formation.
    Type: Application
    Filed: April 24, 2015
    Publication date: October 27, 2016
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jie Liu, Seung Park, Anchuan Wang, Zhenjiang Cui, Nitin K. Ingle
  • Patent number: 9478432
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a gas phase etch using plasma effluents formed in a remote plasma. The remote plasma excites a fluorine-containing precursor in combination with an oxygen-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents combine with water vapor or an alcohol. The combination react with the patterned heterogeneous structures to remove an exposed silicon oxide portion faster than a second exposed portion. The inclusion of the oxygen-containing precursor may suppress the second exposed portion etch rate and result in unprecedented silicon oxide etch selectivity.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: October 25, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Anchuan Wang, Nitin K. Ingle
  • Patent number: 9478434
    Abstract: A method of removing titanium nitride hardmask is described. The hardmask resides above a low-k dielectric layer prior to removal and the low-k dielectric layer retains a relatively low net dielectric constant after the removal process. The low-k dielectric layer may be part of a dual damascene structure having copper at the bottom of the vias. A non-porous carbon layer is deposited prior to the titanium nitride hardmask removal to protect the low-k dielectric layer and the copper. The titanium nitride hardmask is removed with a gas-phase etch using plasma effluents formed in a remote plasma from a chlorine-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: October 25, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Xikun Wang, Mandar Pandit, Zhenjiang Cui, Mikhail Korolik, Anchuan Wang, Nitin K. Ingle, Jie Liu
  • Publication number: 20160307771
    Abstract: A method of etching silicon nitride on patterned heterogeneous structures is described and includes a gas phase etch using anhydrous vapor-phase HF. The HF may be combined with one or more of several precursors in the substrate processing region and near the substrate to increase the silicon nitride etch rate and/or the silicon nitride selectivity. The silicon nitride etch selectivity is increased most notably when compared with silicon of various forms. No precursors are excited in any plasma either outside or inside the substrate processing region according to embodiments. The HF may be flowed through one set of channels in a dual-channel showerhead while the other precursor is flowed through a second set of channels in the dual-channel showerhead.
    Type: Application
    Filed: April 17, 2015
    Publication date: October 20, 2016
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jingjing Xu, Fei Wang, Anchuan Wang, Nitin K. Ingle, Robert Jan Visser
  • Patent number: 9472417
    Abstract: Methods of selectively etching metal-containing materials from the surface of a substrate are described. The etch selectively removes metal-containing materials relative to silicon-containing films such as silicon, polysilicon, silicon oxide, silicon germanium, silicon carbide, silicon carbon nitride and/or silicon nitride. The methods include exposing metal-containing materials to halogen containing species in a substrate processing region. No plasma excites the halogen-containing precursor either remotely or locally in embodiments.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: October 18, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Jessica Sevanne Kachian, Lin Xu, Soonam Park, Xikun Wang, Jeffrey W. Anthis
  • Publication number: 20160284556
    Abstract: Methods of etching a patterned substrate may include flowing an oxygen-containing precursor into a first remote plasma region fluidly coupled with a substrate processing region. The oxygen-containing precursor may be flowed into the region while forming a plasma in the first remote plasma region to produce oxygen-containing plasma effluents. The methods may also include flowing a fluorine-containing precursor into a second remote plasma region fluidly coupled with the substrate processing region while forming a plasma in the second remote plasma region to produce fluorine-containing plasma effluents. The methods may include flowing the oxygen-containing plasma effluents and fluorine-containing plasma effluents into the processing region, and using the effluents to etch a patterned substrate housed in the substrate processing region.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Dmitry Lubomirsky, Xinglong Chen, Shankar Venkataraman
  • Patent number: 9449843
    Abstract: Methods of selectively etching metals and metal nitrides from the surface of a substrate are described. The etch selectively removes metals and metal nitrides relative to silicon-containing layers such as silicon, polysilicon, silicon oxide, silicon germanium, silicon carbide, silicon carbon nitride and/or silicon nitride. The etch removes material in a conformal manner by including an oxidation operation which creates a thin uniform metal oxide. The thin uniform metal oxide is then removed by exposing the metal oxide to a metal-halogen precursor in a substrate processing region. The metal oxide may be removed to completion and the etch may stop once the uniform metal oxide layer is removed. Etches described herein may be used to uniformly trim back material on high aspect ratio features which ordinarily show higher etch rates near the opening of a gap compared to deep within the gap.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: September 20, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Mikhail Korolik, Nitin K. Ingle, David Thompson, Jeffrey W. Anthis, David Knapp, Benjamin Schmiege
  • Patent number: 9449846
    Abstract: Methods of selectively etching tungsten from the surface of a patterned substrate are described. The methods electrically separate vertically arranged tungsten slabs from one another as needed. The vertically arranged tungsten slabs may form the walls of a trench during manufacture of a vertical flash memory cell. The tungsten etch may selectively remove tungsten relative to films such as silicon, polysilicon, silicon oxide, aluminum oxide, titanium nitride and silicon nitride. The methods include exposing electrically-shorted tungsten slabs to remotely-excited fluorine formed in a remote plasma region. Process parameters are provided which result in uniform tungsten recess within the trench. A low electron temperature is maintained in the substrate processing region to achieve high etch selectivity and uniform removal throughout the trench.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: September 20, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jie Liu, Vinod R. Purayath, Xikun Wang, Anchuan Wang, Nitin K. Ingle
  • Patent number: 9449845
    Abstract: Methods of etching exposed titanium nitride with respect to other materials on patterned heterogeneous structures are described, and may include a remote plasma etch formed from a fluorine-containing precursor. Precursor combinations including plasma effluents from the remote plasma are flowed into a substrate processing region to etch the patterned structures with high titanium nitride selectivity under a variety of operating conditions. The methods may be used to remove titanium nitride at faster rates than a variety of metal, nitride, and oxide compounds.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: September 20, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Jie Liu, Jingchun Zhang, Anchuan Wang, Nitin K. Ingle, Seung Park, Zhijun Chen, Ching-Mei Hsu
  • Patent number: 9449850
    Abstract: Systems, chambers, and processes are provided for controlling process defects caused by moisture contamination. The systems may provide configurations for chambers to perform multiple operations in a vacuum or controlled environment. The chambers may include configurations to provide additional processing capabilities in combination chamber designs. The methods may provide for the limiting, prevention, and correction of aging defects that may be caused as a result of etching processes performed by system tools.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: September 20, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Xinglong Chen, Zihui Li, Hiroshi Hamana, Zhijun Chen, Ching-Mei Hsu, Jiayin Huang, Nitin K. Ingle, Dmitry Lubomirsky, Shankar Venkataraman, Randhir Thakur
  • Patent number: 9437451
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconi™ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: September 6, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Jingchun Zhang, Ching-Mei Hsu, Seung Park, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20160240389
    Abstract: A method of etching patterned heterogeneous silicon-containing structures is described and includes a remote plasma etch with inverted selectivity compared to existing remote plasma etches. The methods may be used to conformally trim polysilicon while removing little or no silicon oxide. More generally, silicon-containing films containing less oxygen are removed more rapidly than silicon-containing films which contain more oxygen. Other exemplary applications include trimming silicon carbon nitride films while essentially retaining silicon oxycarbide. Applications such as these are enabled by the methods presented herein and enable new process flows. These process flows are expected to become desirable for a variety of finer linewidth structures. Methods contained herein may also be used to etch silicon-containing films faster than nitrogen-and-silicon containing films having a greater concentration of nitrogen.
    Type: Application
    Filed: April 25, 2016
    Publication date: August 18, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20160240402
    Abstract: A method of conditioning internal surfaces of a plasma source includes flowing first source gases into a plasma generation cavity of the plasma source that is enclosed at least in part by the internal surfaces. Upon transmitting power into the plasma generation cavity, the first source gases ignite to form a first plasma, producing first plasma products, portions of which adhere to the internal surfaces. The method further includes flowing the first plasma products out of the plasma generation cavity toward a process chamber where a workpiece is processed by the first plasma products, flowing second source gases into the plasma generation cavity. Upon transmitting power into the plasma generation cavity, the second source gases ignite to form a second plasma, producing second plasma products that at least partially remove the portions of the first plasma products from the internal surfaces.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Patent number: 9418858
    Abstract: Methods of etching exposed silicon on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon while very slowly removing other exposed materials. The silicon selectivity results, in part, from a preponderance of hydrogen-containing precursor in the remote plasma which hydrogen terminates surfaces on the patterned heterogeneous structures. A much lower flow of the fluorine-containing precursor progressively substitutes fluorine for hydrogen on the hydrogen-terminated silicon thereby selectively removing silicon from exposed regions of silicon.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: August 16, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee