Patents by Inventor Noboru Ishida

Noboru Ishida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020117003
    Abstract: An ultrasonic-wave propagation-time measuring method and gas concentration sensor are disclosed in which a reception wave which has been transmitted and received by an ultrasonic element 5 is subjected to full-wave rectification in order to obtain a full-wave-rectified wave, which is then integrated by an integration circuit 37 to obtain an integral value. A peak value of the integral value is held by a peak-hold circuit 39. As to detection of gas concentration, a threshold-level calculation section 21e sets a reference value on the basis of the peak value, and a point in time when the amplitude of a reception wave having undergone full-wave rectification is judged by a comparator 43 to have reached the reference value is regarded as an arrival time. Subsequently, a gas concentration is determined on the basis of a period between the emission time and the arrival time.
    Type: Application
    Filed: February 19, 2002
    Publication date: August 29, 2002
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Keigo Banno, Hideki Ishikawa, Yoshikuni Sato, Noboru Ishida, Takafumi Oshima
  • Publication number: 20020092780
    Abstract: A CO sensor and a CO-concentration measurement method which enables accurate measurement of CO concentration irrespective of the hydrogen concentration of a gas under measurement. By applying a first predetermined voltage between first and second electrodes 7 and 8, hydrogen contained in a gas under measurement which has been introduced into a first measurement space 2 via a first diffusion-controlling section 1 dissociates, decomposes, or reacts with another element to generate protons. The thus-generated protons are transported from the first electrode 7 to the second electrode 8 via a first proton-conductive layer 5 or protons are transported from the second electrode 8 to the first electrode 7 via the first proton-conductive layer 5 (when the hydrogen concentration of the measurement gas is extremely low), so that the hydrogen concentration within the first measurement space 2 is controlled to a constant level.
    Type: Application
    Filed: January 4, 2002
    Publication date: July 18, 2002
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Norihiko Nadanami, Tomonori Kondo, Ryuji Inoue, Noboru Ishida, Takafumi Oshima
  • Patent number: 6418782
    Abstract: When a sensor has deteriorated, the propagation time T1′ of a first reflection wave becomes greater than the propagation time T1 of a first reflection wave as measured in a new sensor. If measurement of the concentration of a specific gas is based on the propagation time T1 of the first reflection wave as measured in the new sensor, gas concentration cannot be determined accurately. By contrast, a reflection wave other than the first reflection wave (for example, a second reflection wave) is merely reflected off the surface of the ultrasonic element and is not affected by the internal structure of the ultrasonic element. Therefore, even when the sensor is deteriorated, the propagation time T2, T2′ of the second reflection wave exhibits less variation and is less susceptible to deterioration of the sensor.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: July 16, 2002
    Assignee: NGK Spark Plug Co., Ltd
    Inventors: Yoshikuni Sato, Noboru Ishida, Hideki Ishikawa, Takafumi Oshima, Yasushi Sato
  • Publication number: 20020072478
    Abstract: Lubricant compositions comprises a lubricant base oil and one or more compounds resulting the modification of a succinimide represented by formula (1) or (2) 1
    Type: Application
    Filed: September 5, 2001
    Publication date: June 13, 2002
    Applicant: Nippon Mitsubishi Oil Corporation
    Inventors: Noboru Ishida, Shinichi Shirahama, Eitaro Morita, Kenichi Komiya, Naozumi Arimoto
  • Patent number: 6375828
    Abstract: A nitrogen oxide concentration detector has a first measurement chamber 2 into which is introduced a measurement gas via a first diffusion resistance 1; an oxygen concentration detection electrode 7a for measuring the oxygen concentration in the measurement gas in said first measurement chamber 1; a first oxygen ion pump cell 6 for pumping out oxygen in the measurement gas from said first measurement chamber 2 based on the potential of said oxygen concentration detection electrode 7a; a second measurement chamber 8 into which the gas is introduced from said first measurement chamber 2 via a second diffusion resistance 3; and a second oxygen ion pump cell 8 having a pair of electrodes 8a,8b across which a voltage is applied to decompose NOx in the second measurement chamber 4 to pump out dissociated oxygen to cause a circuit Ip2 corresponding to the NOx concentration to flow in the second oxygen ion pump cell 8. Variation of NOx concentration is a function of variation of Ip2.
    Type: Grant
    Filed: March 23, 1998
    Date of Patent: April 23, 2002
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Masashi Ando, Noboru Ishida, Satoshi Sugaya, Takafumi Oshima, Norihiko Nadanami, Takaki Otsuka, Yoshikuni Sato, Tatsuo Okumura, Yasuhisa Kuzuya
  • Publication number: 20020040598
    Abstract: A humidity sensor including an insulating substrate, and a lower electrode formed from a noble metal, a moisture sensitive layer formed of a porous body predominantly containing alumina and containing predetermined amounts of TiO2 and SnO2 and an upper electrode formed of a noble metal porous body successively formed on the insulating substrate. The upper electrode is connected to the moisture sensitive layer and a portion of the insulating substrate. Preferably, the lower electrode is formed of a porous body. More preferably, the lower and upper electrodes are formed from Pt. Furthermore, preferably, a heater and a temperature measurement resistor are provided in the insulating substrate and are located directly below the moisture sensitive layer.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 11, 2002
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Satoshi Sugaya, Tetsuo Yamada, Noboru Ishida
  • Publication number: 20020017467
    Abstract: A nitrogen oxide concentration detector has a first measurement chamber 2 into which is introduced a measurement gas via a first diffusion resistance 1; an oxygen concentration detection electrode 7a for measuring the oxygen concentration in the measurement gas in said first measurement chamber 1; a first oxygen ion pump cell 6 for pumping out oxygen in the measurement gas from said first measurement chamber 2 based on the potential of said oxygen concentration detection electrode 7a; a second measurement chamber 8 into which the gas is introduced from said first measurement chamber 2 via a second diffusion resistance 3; and a second oxygen ion pump cell 8 having a pair of electrodes 8a,8b across which a voltage is applied to decompose NOx in the second measurement chamber 4 to pump out dissociated oxygen to cause a current Ip2 corresponding to the NOx concentration to flow in the second oxygen ion pump cell 8. Variation of NOx concentration is a function of variation of Ip2.
    Type: Application
    Filed: March 23, 1998
    Publication date: February 14, 2002
    Inventors: MASASHI ANDO, NOBORU ISHIDA, SATOSHI SUGAYA, TAKAFUMI OSHIMA, NORIHIKO NADANAMI, TAKAKI OTSUKA, YOSHIKUNI SATO, TATSUO OKUMURA, YASUHISA KUZUYA
  • Patent number: 6344134
    Abstract: An apparatus and method using a two-serial space sensor (having first and second internal spaces 2,3) for accurately measuring NOx concentration in gas, e.g., exhausted from an internal combustion engine. Both NOx (nitrogen oxide) and oxygen are forced to be partially dissociated in the first space 2 to an oxygen concentration level of 2×10−7 to 2×10−10 atm by pumping out oxygen from the first space 2. The NOx concentration is determined based on the second current measured in the second space 4 and based on the NO dissociation percentage in the first chamber which is 0.5-50%, or preferably 2-20%. The NOx measurement accuracy is further improved when the above oxygen concentration level is maintained from 2×10−8 to 2×10−9 and the temperature drift of the sensor is maintained within ±5° C. under a sensor temperature range of 700-900° C.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: February 5, 2002
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Tessho Yamada, Noboru Ishida, Toshitaka Matsuura, Yoshiro Noda, Nobuhiro Hayakawa, Norihiko Nadanami, Satoshi Sugaya, Takaki Otsuka, Masashi Ando, Takafumi Oshima
  • Publication number: 20020011409
    Abstract: A gas sensor comprises a first pump cell 6 including first internal and external electrodes 10 and 11 so formed as to face from inside and outside a first flow passage 2, respectively, for pumping oxygen out from, and into, the first flow passage, and a second pump cell 8 including second internal and external electrodes 14 and 15 so formed as to face from inside and outside a second flow passage 4 communicating with the first flow passage through a diffusion resistance, wherein a measurement gas component undergoes reaction inside the second flow passage 4 and a current corresponding to the concentration of the measurement gas component flows between the electrodes 14 and 15 through the oxygen ion conductor. At least a part of the first internal electrode 10 contains a platinum group element and Cu.
    Type: Application
    Filed: September 20, 1999
    Publication date: January 31, 2002
    Inventors: SATOSHI SUGAYA, NORIHIKO NADANAMI, NOBORU ISHIDA, TAKAFUMI OSHIMA, TETSUO YAMADA
  • Patent number: 6328726
    Abstract: A blood collecting apparatus comprises a blood collecting needle 152; the blood collecting bag, a first tube whose one end communicates with the blood collecting bag and other end communicates with the blood collecting needle, the branch portion provided on a portion of the first tube, a second tube connected with the branch portion at one end thereof and having a blood take-out port (sampling port); and a flexible resin bag including a third tube communicating with the second tube. The flexible resin bag is capable of accommodating air inside a part of the first tube between the branch portion and the blood collecting needle and air inside the second tube when the blood collecting apparatus is used.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: December 11, 2001
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Noboru Ishida, Yoshihiro Yokoo, Hitoshi Kuroki
  • Patent number: 6308572
    Abstract: A gas concentration sensor comprises an ultrasonic element 33 opposite a reflection surface 34. A depression 34a is formed on an edge portion of a reflection surface 34 which is in contact with a side wall of a measurement chamber 32 such that a bottom surface of the depression 34a is substantially in parallel with the reflection surface 34. The distance between the ultrasonic element 33 and the edge portion of the reflection surface 34 becomes greater than the distance between the ultrasonic element 33 and a central portion of the reflection surface 34. As a result, an indirect wave, which impinges obliquely on the side wall of the measurement chamber 32 and propagates along the side wall, is reflected from the bottom surface of the depression 34a and propagates.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: October 30, 2001
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hideki Ishikawa, Yoshikuni Sato, Keigo Banno, Noboru Ishida, Takafumi Oshima
  • Publication number: 20010010293
    Abstract: A traction drive fluid comprising a naphthenic compound represented by the formula 1
    Type: Application
    Filed: December 15, 2000
    Publication date: August 2, 2001
    Applicant: Nippon Mitsubishi Oil Corporation
    Inventors: Noboru Ishida, Shinichi Shirahama, Tetsuo Okawa, Shigeki Matsui
  • Patent number: 6242393
    Abstract: A traction drive fluid comprises a tractant selected from the specific types of hydrocarbons, carboxylates and carbonate, optionally an effective amount of a base oil selected from a mineral oil and a synthetic oil and additives selected from a viscosity index improver, a ashless dispersant, a phosphorus-containing additive, a friction adjusting agent, a metallic detergent, an oxidation inhibitor, a polar additive, a corrosion inhibitor, a rubber swelling agent, a antifoamer and a colorant.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: June 5, 2001
    Assignee: Nippon Mitsubishi Oil Corporation
    Inventors: Noboru Ishida, Junya Kohno, Shinichi Shirahama, Tetsuo Okawa
  • Patent number: 6224727
    Abstract: An NOx sensor capable of accurately determining the concentration of NOx contained in a gas to be analyzed (measurement gas) using a simple circuit. The NOx sensor includes a first measurement space and a second measurement space. The first measurement space communicates with the measurement gas via a first diffusion controlling layer, and the second measurement space communicates with the first measurement space via a second diffusion controlling layer. A first pumping current IP1 is controlled such that an output from a Vs cell is used as a reference voltage VC0 to control the amount of oxygen flowing into the second measurement space at a constant level. A constant voltage is applied to the second pumping cell so as to decompose the NOx component of the measurement gas contained in the second measurement space, and to pump out the resulting oxygen from the second measurement space. Accordingly, the concentration of NOx contained in the measurement gas can be obtained from second pumping current IP2.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: May 1, 2001
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Shigeru Miyata, Masashi Ando, Hiroshi Inagaki, Noboru Ishida, Takafumi Oshima
  • Patent number: 6221264
    Abstract: A white blood cell-removing device has a bag-shaped housing made of soft resin, a white blood cell-removing filter member partitioning the inside of the housing into an inlet side blood chamber and an outlet side blood chamber, a blood inlet port positioned at one side of the housing and communicating with the inlet side blood chamber; and a blood outlet port positioned at the other side of the housing and communicating with the outlet side blood chamber. An inner surface (the outlet side blood chamber) of the bag-shaped housing is a unevenness surface. The white blood cell-removing filter member has a filtering part and a non-filtering part formed on the entire periphery of the filtering part.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: April 24, 2001
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Noboru Ishida, Susumu Fujikawa
  • Patent number: 6214208
    Abstract: This is a method and apparatus for accurately determining a NOx concentration of a measurement gas that contains H2O and/or CO2, without being affected by a dissociation of H2O and/or CO2.
    Type: Grant
    Filed: December 2, 1997
    Date of Patent: April 10, 2001
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Masashi Ando, Noboru Ishida, Satoshi Sugaya, Takafumi Oshima, Norihiko Nadanami, Takaki Ootuka, Yoshikuni Sato, Tatsuo Okumura
  • Patent number: 6153118
    Abstract: A refrigerator oil for use in compressors using therein a hydrogen-containing halogenocarbon as a refrigerant, consisting essentially of as a base oil at least two esters selected from the group consisting of a specific pentaerythritol ester such as an ester of pentaerythritol with a mono- or dicarboxylic acid, a specific polyol ester such as an ester of trimethylolethane with a mono- or dicarboxylic acid, a specific ester such as an ester of ethylene glycol and a dicarboxylic acid, and a specific polyol ester synthesized from a neopentyl type polyhydric alcohol, a monocarboxylic acid and a dicarboxylic acid; and further comprising at least one kind of an epoxy compound.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: November 28, 2000
    Assignee: Nippon Mitsubishi Oil Corp.
    Inventors: Hiroshi Hasegawa, Noboru Ishida, Umekichi Sasaki, Tatsuyuki Ishikawa
  • Patent number: 6071393
    Abstract: A small-sized inexpensive nitrogen oxide concentration sensor capable of measuring the concentration of the nitrogen oxide in a measuring gas to a high accuracy. A first oxygen pumping cell, an oxygen concentration measuring cell and a second oxygen pumping cell are formed in different solid electrolyte layers of zirconia and electrodes of oxygen concentration measuring cell are isolated from electrodes of the oxygen pumping cells by insulating film.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: June 6, 2000
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Takafumi Oshima, Masashi Ando, Noboru Ishida, Satoshi Sugaya, Norihiko Nadanami
  • Patent number: 6068970
    Abstract: A cell storage bag system comprises a storage bag for containing cells to which at least one connecting tube having a closed end is connected, a reservoir container for containing an additive fluid to which a fluid supply tube having a closed end is connected, and a waste fluid container for receiving waste fluid to which a waste fluid tube having a closed end is connected. In the system, the at least one connecting tube is adapted to be connected to the fluid supply tube and/or said waste fluid tube by means of a tube connecting apparatus in a sterile manner, and when the connecting tube is connected to the fluid supply tube, the additive fluid is supplied to the reservoir bag through these connected tubes, and when the connecting tube is connected to the waste fluid tube, the waste fluid is collected from the storage bag through these connected tubes.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: May 30, 2000
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Norio Hosono, Noboru Ishida
  • Patent number: 5928393
    Abstract: A fuel additive which comprises a compound selected from a novel amine, oxygen-containing and nitrogen-containing compounds having selected structures. The inventive additive when blended with a gasoline serves to suppress sludge or deposits in fuel intake systems or combustion chambers for example of an automobile engine.
    Type: Grant
    Filed: July 17, 1997
    Date of Patent: July 27, 1999
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Noboru Ishida, Katsuhiko Haji, Masaki Nagao, Toru Yoshii