Patents by Inventor Nobuaki Matsumoto

Nobuaki Matsumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132648
    Abstract: Provided are a low-viscosity ultraviolet curable silicone composition capable of being used even in a surface exposure method and a lift-up method etc.; and a cured product superior in tensile strength and elongation at break.
    Type: Application
    Filed: December 29, 2023
    Publication date: April 25, 2024
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Nobuaki MATSUMOTO, Kohei OTAKE, Taichi KITAGAWA, Tsuyoshi MATSUDA, Toshiyuki OZAI
  • Publication number: 20240076434
    Abstract: Provided is an oxygen-curable silicone composition that cures at room temperature, the reaction being triggered by oxygen in the atmosphere, without requiring heat or UV irradiation at the time of use, and exhibits good mechanical strength after curing. A composition including (A) an organopolysiloxane (1) (R1 represents an alkyl group or the like but has at least one acryloyloxy group or the like in the molecule, R2 represents an oxygen atom or the like, and m and n represent numbers that satisfy 1?m+n 1,000.), (B) a silicone resin including (a) a unit of formula (2), (b) an R13SiO1/2 unit, and (c) an SiO4/2 unit, the molar ratio of [(a)+(b)]/(c) being 0.4-1.2, and the silicone resin having 0.005 mol/100 g or more Si-OH groups (R1 and R2 are the same as above. R3 represents an acryloyloxyalkyl group or the like, p represents 0-10, and 1 represents a number that satisfies 1-3.), and (C) an organoborane complex (3) (R4-R6 represent hydrocarbon groups.).
    Type: Application
    Filed: August 13, 2020
    Publication date: March 7, 2024
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Taichi KITAGAWA, Nobuaki MATSUMOTO, Toshiyuki OZAI, Masayuki IKENO
  • Publication number: 20240072203
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Applicants: SemiLEDs Corporation, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Chen-Fu Chu, Shih-Kai Chan, Yi-Feng Shih, David Trung Doan, Trung Tri Doan, Yoshinori Ogawa, Kohei Otake, Kazunori Kondo, Keiji Ohori, Taichi Kitagawa, Nobuaki Matsumoto, Toshiyuki Ozai, Shuhei Ueda
  • Publication number: 20240063339
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Application
    Filed: October 26, 2023
    Publication date: February 22, 2024
    Applicants: SamiLEDs Corporation, SHIN-ETSU CHEMICAL. CO., LTD.
    Inventors: Chen-Fu Chu, SHIH-KAI CHAN, YI-FENG SHIH, DAVID TRUNG DOAN, TRUNG TRI DOAN, YOSHINORI OGAWA, KOHEI OTAKE, KAZUNORI KONDO, KEIJI OHORI, TAICHI KITAGAWA, NOBUAKI MATSUMOTO, TOSHIYUKI oZAI, SHUHEI UEDA
  • Patent number: 11862754
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: January 2, 2024
    Assignees: SemiLEDs Corporation, Shin-Etsu Chemical Co., Ltd.
    Inventors: Chen-Fu Chu, Shih-Kai Chan, Yi-Feng Shih, David Trung Doan, Trung Tri Doan, Yoshinori Ogawa, Kohei Otake, Kazunori Kondo, Keiji Ohori, Taichi Kitagawa, Nobuaki Matsumoto, Toshiyuki Ozai, Shuhei Ueda
  • Patent number: 11862755
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 2, 2024
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Chen-Fu Chu, Shih-Kai Chan, Yi-Feng Shih, David Trung Doan, Trung Tri Doan, Yoshinori Ogawa, Kohei Otake, Kazunori Kondo, Keiji Ohori, Taichi Kitagawa, Nobuaki Matsumoto, Toshiyuki Ozai, Shuhei Ueda
  • Publication number: 20230387084
    Abstract: A method for producing a light emitting diode supply substrate for transferring a plurality of light emitting diodes to a supply destination, including: a first mounting step of mounting a plurality of light emitting diodes on a supply substrate; a selective removal step of selectively removing defective light emitting diodes on the supply substrate, and a second mounting step of transferring a normal light emitting diode to a position where the defective light emitting diode has been arranged on the supply substrate. Thus, a method produces a light emitting diode supply substrate capable of producing a light emitting diode supply substrate capable of transferring a plurality of normal light emitting diodes to a supply destination.
    Type: Application
    Filed: September 27, 2021
    Publication date: November 30, 2023
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hideo NAKAGAWA, Yoshinori OGAWA, Nobuaki MATSUMOTO, Kazunori KONDO
  • Patent number: 11827799
    Abstract: Provided is an ultraviolet curable silicone composition capable of being ejected via inkjet ejection. The composition of the invention is an ultraviolet curable silicone composition comprising: (A) an organopolysiloxane represented by the following general formula (1) wherein each R1 independently represents a group selected from a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, an acryloyl group, a methacryloyl group, an alkyl acrylate group and an alkyl methacrylate group, while the component (A) has per molecule at least two groups selected from an acryloyl group, a methacryloyl group, an alkyl acrylate group and an alkyl methacrylate group; n represents a number satisfying 10?n?1,000; (B) a monofunctional (meth)acrylate compound having no siloxane structure; and/or (C) a multifunctional (meth)acrylate compound having no siloxane structure; and (D) a photopolymerization initiator.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: November 28, 2023
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Nobuaki Matsumoto, Taichi Kitagawa, Atsushi Yaginuma, Masaaki Shirota
  • Publication number: 20230348758
    Abstract: An addition-curing silicone pressure-sensitive adhesive composition which contains no noncrosslinking organopolysiloxane resin and comprises 100 parts by mass of (A) an organopolysiloxane having, in the molecule, at least two alkenyl groups which combine with silicon atoms and having a 25° C. viscosity of 0.01-1,000 Pa·s, 5-500 parts by mass of (B) an organopolysiloxane resin having an alkenyl group, (C) an organohydrogenpolysiloxane having, in the molecule, two or more silicon-atom-bonded hydrogen atoms, the amount of (C) being such that the amount of the silicon-atom-bonded hydrogen atoms contained in the (C) component is 0.1-5.0 times by mole the total amount of all the silicon-atom-bonded alkenyl groups contained in the composition, and (D) a catalyst based on a platinum-group metal. The addition-curing silicone pressure-sensitive adhesive composition has excellent tackiness as a temporary fixer and gives cured objects with very little component migration.
    Type: Application
    Filed: December 10, 2020
    Publication date: November 2, 2023
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Kohei OTAKE, Taichi KITAGAWA, Nobuaki MATSUMOTO, Toshiyuki OZAI
  • Publication number: 20230340265
    Abstract: Provided is an ultraviolet curable silicone composition capable of being ejected via inkjet ejection. The ultraviolet curable silicone composition contains: (A) a one-end polymerizable organopolysiloxane represented by the following formula (1) wherein each of R1, R2, R3, R4 and R5 independently represents a linear or branched alkyl group having 1 to 20 carbon atoms, or an aryl-containing group having 6 to 10 carbon atoms; R6 represents a divalent organic group having 2 to 20 carbon atoms; R7 represents an alkylene group having 2 to 20 carbon atoms; R8 represents a hydrogen atom or a methyl group; n is a number of 1 to 500; X represents an alkylene group having 2 to 20 carbon atoms; Y represents —OCH2CH2—, —OCH(CH3)CH2— or —OCH2CH(CH3)—; p is a number of not smaller than 1; Z is —O— or —NH—; and (B) a photopolymerization initiator.
    Type: Application
    Filed: September 7, 2021
    Publication date: October 26, 2023
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Nobuaki MATSUMOTO, Mamoru HAGIWARA, Toshiyuki OZAI, Ryota HASHIMOTO
  • Publication number: 20230134997
    Abstract: A method for transferring alignment marks between substrate systems includes providing a substrate having semiconductor devices and alignment marks in precise alignment with the semiconductor devices; and physically transferring and bonding the semiconductor devices and the alignment marks to a temporary substrate of a first substrate system. The method can also include physically transferring and bonding the semiconductor devices and the alignment marks to a mass transfer substrate of a second substrate system; and physically transferring and bonding the semiconductor devices and the alignment marks to a circuitry substrate of a third substrate system. A system for transferring alignment marks between substrate systems includes the substrate having the semiconductor devices and the alignment marks in precise alignment with the semiconductor devices. The system also includes the first substrate system, and can include the second substrate system and the third substrate system.
    Type: Application
    Filed: November 18, 2022
    Publication date: May 4, 2023
    Applicants: SemiLEDs Corporation, Shin-Etsu Chemical Co. Ltd.
    Inventors: David Trung Doan, Yoshinori Ogawa, Nobuaki Matsumoto
  • Publication number: 20230018855
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate [30], and forming a plurality of die sized semiconductor structures [32] on the substrate [30]. The method also includes the steps of providing a receiving plate [42] having an elastomeric polymer layer [44], placing the substrate [30] and the receiving plate [42] in close proximity with a gap [101] therebetween, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate [30] to the semiconductor layer [50] at an interface with the substrate [30] to lift off the semiconductor structures [32] through the gap [101] onto the elastomeric polymer layer [44]. During the laser lift-off (LLO) process the elastomeric polymer layer [44] functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures [32] in place on the receiving plate [42].
    Type: Application
    Filed: August 3, 2022
    Publication date: January 19, 2023
    Applicants: SemiLEDs Corporation, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: CHEN-FU CHU, SHIH-KAI CHAN, YI-FENG SHIH, DAVID TRUNG DOAN, TRUNG TRI DOAN, YOSHINORI OGAWA, KOHEI OTAKE, KAZUNORI KONDO, KEIJI OHORI, TAICHI KITAGAWA, NOBUAKI MATSUMOTO, TOSHIYUKI OZAI, SHUHEI UEDA, JUNYA ISHIZAKI
  • Patent number: 11545474
    Abstract: A method for transferring alignment marks between substrate systems includes providing a substrate having semiconductor devices and alignment marks in precise alignment with the semiconductor devices; and physically transferring and bonding the semiconductor devices and the alignment marks to a temporary substrate of a first substrate system. The method can also include physically transferring and bonding the semiconductor devices and the alignment marks to a mass transfer substrate of a second substrate system; and physically transferring and bonding the semiconductor devices and the alignment marks to a circuitry substrate of a third substrate system. A system for transferring alignment marks between substrate systems includes the substrate having the semiconductor devices and the alignment marks in precise alignment with the semiconductor devices. The system also includes the first substrate system, and can include the second substrate system and the third substrate system.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: January 3, 2023
    Assignees: SemiLEDs Corporation, Shin-Etsu Chemical Co., Ltd.
    Inventors: David Trung Doan, Yoshinori Ogawa, Nobuaki Matsumoto
  • Publication number: 20220359785
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Applicants: SemiLEDS Corporation, Shin-Etsu Chemical Co., Ltd.
    Inventors: Chen-Fu Chu, Shih-Kai Chan, Yi-Feng Shih, David Trung Doan, Trung Tri Doan, Yoshinori Ogawa, Kohei Otake, Kazunori Kondo, Keiji Ohori, Taichi Kitagawa, Nobuaki Matsumoto, Toshiyuki Ozai, Shuhei Ueda
  • Publication number: 20220315418
    Abstract: A method for transferring microstructures, comprising at least the steps of: (i) bonding a plurality of microstructures formed on one surface of a supplier substrate to a silicone-based rubber layer formed on a donor substrate; (ii) separating some or all of the plurality of microstructures from the supplier substrate and transferring the some or all of the plurality of microstructures to the donor substrate through the silicone-based rubber layer to produce the donor substrate having the to plurality of microstructures temporality fixed thereon; (iii) washing or neutralizing the donor substrate having the plurality of microstructures temporality fixed thereon; (iv) drying the washed or neutralized donor substrate having the plurality of microstructures temporality fixed thereon; and (v) transferring the dried donor substrate having the plurality of microstructures temporality fixed thereof so that the donor substrate can be subjected to a subsequent step.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 6, 2022
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Yoshinori OGAWA, Keiji OHORI, Shuhei UEDA, Kazunori KONDO, Toshiyuki OZAI, Nobuaki MATSUMOTO, Taichi KITAGAWA, Kohei OTAKE, Minoru KAWAHARA
  • Publication number: 20220320366
    Abstract: A method for fabricating semiconductor light emitting devices (LEDs) includes forming a plurality of light emitting diode (LED) structures having sidewall P-N junctions on a growth substrate, and forming an isolation layer on the light emitting diode (LED) structures having corners at intersections of the epitaxial structures with the growth substrate. The method also includes forming an etchable covering channel layer on the isolation layer, forming a patterning protection layer on the covering channel layer, forming etching channels in the covering channel layer using a first etching process, and removing the corners of the isolation layer by etching the isolation layer using a second etching process. Following the second etching process the isolation layer covers the sidewall P-N junctions. The method can also include bonding the growth substrate to a carrier and separating the growth substrate from the light emitting diode (LED) structures using a laser lift off (LLO) process.
    Type: Application
    Filed: February 16, 2022
    Publication date: October 6, 2022
    Applicants: SemiLEDs Corporation, Shin-Etsu Chemical Co., Ltd.
    Inventors: CHEN-FU CHU, SHIH-KAI CHAN, YI-FENG SHIH, TRUNG TRI DOAN, DAVID TRUNG DOAN, YOSHINORI OGAWA, KAZUNORI KONDO, TOSHIYUKI OZAI, NOBUAKI MATSUMOTO, TAICHI KITAGAWA
  • Publication number: 20220271198
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Application
    Filed: May 10, 2022
    Publication date: August 25, 2022
    Applicants: SemiLEDs Corporation, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Chen-Fu Chu, SHIH-KAI CHAN, YI-FENG SHIH, DAVID TRUNG DOAN, TRUNG TRI DOAN, YOSHINORI OGAWA, KOHEl OTAKE, KAZUNORI KONDO, KEIJI OHORI, TAICHI KITAGAWA, NOBUAKI MATSUMOTO, TOSHIYUKI OZAi, SHUHEI UEDA
  • Patent number: 11417799
    Abstract: A method for fabricating light emitting diode (LED) dice includes the steps of: providing a substrate, and forming a plurality of die sized semiconductor structures on the substrate. The method also includes the steps of providing a receiving plate having an elastomeric polymer layer, placing the substrate and the receiving plate in physical contact with an adhesive force applied by the elastomeric polymer layer, and performing a laser lift-off (LLO) process by directing a uniform laser beam through the substrate to the semiconductor layer at an interface with the substrate to lift off the semiconductor structures onto the elastomeric polymer layer. During the laser lift-off (LLO) process the elastomeric polymer layer functions as a shock absorber to reduce momentum transfer, and as an adhesive surface to hold the semiconductor structures in place on the receiving plate.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: August 16, 2022
    Assignees: SemiLEDs Corporation, Shin-Etsu Chemical Co., Ltd.
    Inventors: Chen-Fu Chu, Shih-Kai Chan, Yi-Feng Shih, David Trung Doan, Trung Tri Doan, Yoshinori Ogawa, Kohei Otake, Kazunori Kondo, Keiji Ohori, Taichi Kitagawa, Nobuaki Matsumoto, Toshiyuki Ozai, Shuhei Ueda
  • Patent number: 11370869
    Abstract: According to the present invention, an ultraviolet curable silicone composition for stereolithography, which contains (A) an organopolysiloxane that has two groups represented by formula (1) (wherein each R1 independently represents a monovalent hydrocarbon group having 1-20 carbon atoms; R2 represents an oxygen atom or the like; R3 represents an acryloyloxyalkyl group or the like; p represents a number satisfying 0?p?10; and a represents a number satisfying 1?a?3) in each molecule, (B) an organopolysiloxane resin that is composed of (a) a unit represented by formula (2) (wherein R1-R3, a and p are as defined above), (b) an R43SiO1/2 unit (wherein each R4 independently represents a monovalent hydrocarbon group having 1-10 carbon atoms) and (c) an SiO4/2 unit, and wherein the molar ratio of the total of the unit (a) and the unit (b) to the unit (c) is within the range of 0.6-1.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: June 28, 2022
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Kohei Otake, Nobuaki Matsumoto, Taichi Kitagawa, Toshiyuki Ozai, Atsushi Yaginuma
  • Publication number: 20220135744
    Abstract: Provided are an excellently convenient ultraviolet-curable organopolysiloxane causing no surface curing inhibition even when cured in the atmosphere; a composition containing such organopolysiloxane; and a cured product of such composition. The organopolysiloxane is represented by the following formula (1): wherein each R1 independently represents a monovalent hydrocarbon group having 1 to 10 carbon atoms or a group represented by the following formula (2), each molecule has at least one group represented by the following formula (2), m is a number satisfying 1?m?10,000, wherein R2 represents a group having at least one of an acryloyl group, methacryloyl group, acryloyloxyalkyl group or methacryloyloxyalkyl group, R3 represents a divalent hydrocarbon group having 1 to 20 carbon atoms.
    Type: Application
    Filed: March 5, 2020
    Publication date: May 5, 2022
    Applicant: Shin-Etsu Chemical Co., Ltd.
    Inventors: Nobuaki MATSUMOTO, Toshiyuki OZAI, Taichi KITAGAWA, Kohei OTAKE, Mamoru HAGIWARA