Patents by Inventor Nobuharu Kakehashi

Nobuharu Kakehashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150258875
    Abstract: A thermal management system for a vehicle includes a first pump and a second pump, temperature adjustment target devices, heat exchangers, numerous flow paths including a first pump arrangement flow path, a second pump arrangement flow path, and device arrangement flow paths, a first switching portion for allowing the numerous flow paths to selectively communicate with each other, a second switching portion for allowing the numerous flow paths to selectively communicate with each other, and a reserve tank for storing therein heat medium. The reserve tank is configured to set the pressure of the liquid surface of the stored heat medium to a predetermined pressure (e.g., atmospheric pressure), and is connected to one flow path of the numerous flow paths.
    Type: Application
    Filed: August 23, 2013
    Publication date: September 17, 2015
    Inventors: Norihiko Enomoto, Nobuharu Kakehashi, Michio Nishikawa, Masamichi Makihara, Kazutoshi Kuwayama, Yoshiki Katoh, Kengo Sugimura
  • Publication number: 20150217622
    Abstract: A first-pump arrangement flow path, temperature-adjustment target-device arrangement flow paths, and a second-pump arrangement flow path are connected to a communication flow path in this order from one end side to the other end side of the communication flow path. A first heat exchanger is disposed in the first-pump arrangement flow path among numerous flow paths, which is connected to the communication flow path at a position on a side of the first-pump arrangement flow path, rather than the flow path in which a second heat exchanger is disposed. The switching portion is operated to establish communication between plural flow paths, starting from the flow path connected to the communication flow path at the position closest to the one end side among the numerous flow paths, up to the flow path connected to the communication flow path at an n-th position counted from the one end side among the numerous flow paths.
    Type: Application
    Filed: August 23, 2013
    Publication date: August 6, 2015
    Inventors: Norihiko Enomoto, Nobuharu Kakehashi, Michio Nishikawa
  • Publication number: 20150128632
    Abstract: A vehicular thermo-control device adjusts a temperature of a battery. The device has a primary system through which cooling water circulates, and a secondary system through which a refrigerant circulates. The primary system has a heat exchanger which performs heat exchange between the battery and the cooling water, and a heat exchanger which performs heat exchange between the cooling water and an ambient air. The secondary system is a refrigerating cycle. Both heat exchangers on a high temperature side and a low temperature side of the refrigerating cycle are thermally coupled with the primary system. Only one heat exchanger provides heat exchange with the ambient air. The pump of the primary system can switch circulating direction of the cooling water. A controller controls devices to perform cooling and heating operation.
    Type: Application
    Filed: June 6, 2012
    Publication date: May 14, 2015
    Applicant: DENSO CORPORATION
    Inventors: Hiroshi Kishita, Masayuki Takeuchi, Hideaki Okawa, Seiji Inoue, Nobuharu Kakehashi, Koji Miura
  • Publication number: 20150129161
    Abstract: A heat medium discharge side of a first pump and a heat medium discharge side of a second pump are connected to a first switching valve in parallel. Heat medium inlet sides of the respective target devices for heat exchange included in a first target device group for heat exchange are connected to a first switching valve in parallel. The heat medium inlet side of the first pump and the heat medium inlet side of the second pump are connected to a second switching valve in parallel. The heat medium outlet sides of the respective target devices for heat exchange included in the first target device group for heat exchange are connected to the second switching valve in parallel. Furthermore, switching is performed between a state of circulation of the heat medium between the first pump and the target device, and a state of circulation of the heat medium between the second pump and the target device.
    Type: Application
    Filed: April 24, 2013
    Publication date: May 14, 2015
    Applicant: DENSO CORPORATION
    Inventors: Michio Nishikawa, Nobuharu Kakehashi, Norihiko Enomoto
  • Publication number: 20150101693
    Abstract: A flow passage switching unit includes side-by-side arranged rotary valve parts. The valve part includes a casing, side walls, a peripheral wall, first fluid ports, a second fluid port, a rotary shaft, and a valving element. A flow passage, through which the first fluid ports and the second fluid port selectively communicate, is formed by rotation of the valving element. The unit includes a driving mechanism driving each valving element by its corresponding predetermined rotation angle. The driving mechanism includes one driving source, and a motive power transmission member transmitting rotation motive power of the driving source respectively to the valve parts. Motive power of the driving source is transmitted to each rotary shaft of the valve parts to drive each valving element to a position, which position of the valving element relative to the first and second fluid ports is different from one another among the valve parts.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 16, 2015
    Inventors: Norihiko Enomoto, Michio Nishikawa, Nobuharu Kakehashi, Kengo Sugimura, Yoshiki Katoh
  • Publication number: 20150101789
    Abstract: First circulation portions switch a flow of a heat medium such that one of the heat media for two systems selectively circulates through a radiator flow path or a first bypass flow path. Second circulation portions switch the flow of the heat medium such that the heat media for the two systems selectively circulate with respect to a second flow path group. The first circulation portions and the second circulation portions are adapted to switch the flow of the heat medium so as to form a first circulation circuit for allowing the heat medium to circulate among a first flow path group, the second flow path group, and a first pump, as well as a second circulation circuit for allowing the heat medium to circulate among the first flow path group, the second flow path group, and a second pump.
    Type: Application
    Filed: May 16, 2013
    Publication date: April 16, 2015
    Inventors: Norihiko Enomoto, Nobuharu Kakehashi, Michio Nishikawa, Yasumitsu Omi, Takashi Yamanaka, Masayuki Takeuchi
  • Publication number: 20150072259
    Abstract: A radiator cap is connected to a circulating circuit at a connecting point located upstream of a water pump in a flow direction of coolant and that regulates a pressure in the circulating circuit to be within a predetermined pressure range that is higher than or equal to an atmospheric pressure at the connecting point. A rotary valve is disposed in the circulating circuit at upstream of the connecting point of the radiator cap in the flow direction of coolant. Accordingly, a cavitation is restricted from occurring, and the water pump can perform enough efficiency. A communication passage that has an upstream end and a downstream end connected to the circulating circuit may be disposed instead of the radiator cap. In this case, a pressure regulating valve is disposed in the communication passage.
    Type: Application
    Filed: April 4, 2013
    Publication date: March 12, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takurou Furukoshi, Michio Nishikawa, Nobuharu Kakehashi, Shunjiro Kikawa
  • Publication number: 20150000327
    Abstract: A heat exchanging portion and tank portions are formed by bonding plate members. The tank portion is provided with a refrigerant inlet allowing a refrigerant to flow into a refrigerant tank space, a refrigerant outlet allowing the refrigerant to flow from the refrigerant tank space, a heat medium inlet allowing a heat medium to flow into a heat medium tank space, and a heat medium outlet allowing the heat medium to flow from the heat medium tank space. At least one of the refrigerant inlet, the refrigerant outlet, the heat medium inlet, and the heat medium outlet is disposed between both ends of the tank portions in a tube stacking direction of refrigerant tubes and heat medium tubes.
    Type: Application
    Filed: January 31, 2013
    Publication date: January 1, 2015
    Inventors: Nobuharu Kakehashi, Yoshiki Katoh
  • Publication number: 20140374081
    Abstract: A heat medium discharge side of a first pump and a heat medium discharge side of a second pump are connected to a first switching valve in parallel with each other. Respective heat medium inlet sides of a plurality of temperature adjustment devices are connected to the first switching valve in parallel with each other. Respective heat medium outlet sides of the temperature adjustment devices are connected to a second switching valve in parallel with each other. A heat medium suction side of the first pump and a heat medium suction side of the second pump are connected to the second switching valve in parallel with each other. Each of the temperature adjustment devices is switched between a state in which the heat medium circulates between the device and the first pump, and another state in which the heat medium circulates between the device and the second pump.
    Type: Application
    Filed: January 30, 2013
    Publication date: December 25, 2014
    Inventors: Nobuharu Kakehashi, Takashi Yamanaka, Masayuki Takeuchi
  • Patent number: 8661845
    Abstract: A heat exchanger includes a heat exchanging section for performing heat exchange between a refrigerant and a cooling medium and a passage section. The passage section includes a first passage and a second passage for supplying the refrigerant to the heat exchanging section and a supply passage for supplying the refrigerant to the first passage and the second passage. The first passage and the second passage define a first opening portion and a second opening portion opening at an end of the supply passage. A minimum distance between an opening edge of the first opening portion and an inner surface of the supply passage is equal to a minimum distance between an opening edge of the second opening portion and the inner surface of the supply passage.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: March 4, 2014
    Assignee: Denso Corporation
    Inventors: Thuya Aung, Nobuharu Kakehashi, Tomohiko Nakamura, Hideaki Sato
  • Publication number: 20140041826
    Abstract: A vehicle temperature control apparatus for controlling temperature of a temperature control object, which is at least one of inside air of a vehicle compartment and a vehicle component, includes a heat capacitive element capable of storing heat, a refrigeration cycle in which heat is absorbed from a low temperature side and is dissipated to a high temperature side, a heat exchanger that causes the heat capacitive element to exchange heat with refrigerant of the refrigeration cycle, and a heat dissipation portion which dissipates heat in the refrigerant of the refrigeration cycle to the temperature control object. Thus, a temperature control by using the heat capacitive element can be effectively performed.
    Type: Application
    Filed: April 6, 2012
    Publication date: February 13, 2014
    Applicant: DENSO CORPORATION
    Inventors: Masayuki Takeuchi, Hiroshi Kishita, Yasumitsu Omi, Nobuharu Kakehashi, Hideaki Okawa, Kouji Miura, Michio Nishikawa
  • Publication number: 20140038009
    Abstract: A battery temperature regulating device is applied to a battery pack configured by parallely connecting battery groups, each of which is a series connection of battery cells capable of charge and discharge. The device regulates temperatures of the battery groups. The battery temperature regulating device includes a heat transfer unit that transfers heat of a part of the battery groups to another battery group.
    Type: Application
    Filed: April 5, 2012
    Publication date: February 6, 2014
    Applicant: DENSO CORPORATION
    Inventors: Hideaki Okawa, Hiroshi Kishita, Yasumitsu Omi, Masayuki Takeuchi, Nobuharu Kakehashi, Kouji Miura
  • Publication number: 20130298851
    Abstract: An internal combustion engine has a cylinder-head-passage through which an engine coolant flows toward a water jacket when a water pump is operated. The water pump is an electric water pump utilizing the electric power charged in the battery. A radiator is provided in the cylinder-head-passage. Even after the engine is shut off, the water pump is kept driven.
    Type: Application
    Filed: July 17, 2013
    Publication date: November 14, 2013
    Inventors: Michio NISHIKAWA, Nobuharu Kakehashi, Koji Ota
  • Patent number: 8561580
    Abstract: In an engine, a block-side flow path for circulating cooling water to cool a cylinder block, and a head-side flow path for circulating cooling water to cool a cylinder head are formed. A head-side outlet temperature of cooling water flowing out of the head-side flow path is adjusted by using a water pump that pressure sends the cooling water to both the block-side flow path and the head-side flow path. A block-side outlet temperature of cooling water flowing out of the block-side flow path is adjusted by a first thermostat that changes a flow amount of the cooling water flowing out of the block-side flow path. The cooling water flowing out of the block-side flow path is used as a heat source of first and second heater cores for heating air.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: October 22, 2013
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Nobuharu Kakehashi, Michio Nishikawa, Mitsunobu Uchida
  • Publication number: 20120318473
    Abstract: A cooling device for a vehicle includes a first radiator and a second radiator. The first radiator includes first tubes through which first coolant flows, and the second radiator includes second tubes through which second coolant flows. The second radiator is arranged downstream of the first radiator in a flow direction of cooling air, and the second tubes are elongated in a longitudinal direction different from a longitudinal direction of the first tubes. The second radiator is configured to cause a flow amount of the second coolant flowing respectively in the second tubes to be gradually increased with respect to a flow direction of the first coolant flowing in the first tubes.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Applicant: DENSO CORPORATION
    Inventors: Michio Nishikawa, Nobuharu Kakehashi
  • Publication number: 20120180989
    Abstract: A heating-use heat exchanger which includes a first heater core which exchanges heat between a first liquid and air blown into a passenger compartment and a second heater core which exchanges heat between a second liquid which is higher in temperature and smaller in flow rate than the first liquid and blown air which is heated by the first heater core is held in an air-conditioning case so that an inlet side tank part is at the bottom and an exit side tank part is at the top and the tube longitudinal direction is slanted. Due to this, the high temperature second liquid flowing into the second heater core is stored inside of the inlet side tank part in a region above the tube inlet side ends over the entire stacking direction of the plurality of tubes, then flows into the plurality of tubes.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 19, 2012
    Applicant: DENSO CORPORATION
    Inventors: Koji Ota, Michio Nishikawa, Nobuharu Kakehashi
  • Publication number: 20120125593
    Abstract: A cooler cools electric parts of a vehicle using heat medium. A radiator emits heat of the heat medium to air, and a valve changes a flow of the heat medium based on a temperature of the heat medium. The valve controls the heat medium to bypass the radiator when the temperature of the heat medium is lower than a first predetermined value. The valve controls the heat medium to flow through the radiator when the temperature of the heat medium is higher than or equal to the first predetermined value.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 24, 2012
    Applicant: DENSO CORPORATION
    Inventors: Nobuharu Kakehashi, Nobuyuki Hashimura
  • Patent number: 8099978
    Abstract: An evaporator unit includes a first heat exchanger configured to perform heat exchange between refrigerant flowing thereinto from a refrigerant inlet and air, a bypass passage through which the refrigerant flowing from the refrigerant inlet flows while bypassing the first heat exchanger, a second heat exchanger configured to perform heat exchange between air and mixed refrigerant in which the refrigerant after passing through the first heat exchanger and the refrigerant having passed through the bypass passage are mixed, and a flow amount adjustment portion configured to adjust a flow amount of the refrigerant flowing through the first heat exchanger and a flow amount of the refrigerant flowing through the bypass passage. Accordingly, the first heat exchanger and the second heat exchanger can be configured to have respectively portions in which a dryness of the refrigerant is in a range between 0.6 and 0.9.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: January 24, 2012
    Assignee: Denso Corporation
    Inventors: Thuya Aung, Tomohiko Nakamura, Yoshiyuki Okamoto, Hideaki Sato, Nobuharu Kakehashi
  • Publication number: 20110259287
    Abstract: In an engine, a block-side flow path for circulating cooling water to cool a cylinder block, and a head-side flow path for circulating cooling water to cool a cylinder head are formed. A head-side outlet temperature of cooling water flowing out of the head-side flow path is adjusted by using a water pump that pressure sends the cooling water to both the block-side flow path and the head-side flow path. A block-side outlet temperature of cooling water flowing out of the block-side flow path is adjusted by a first thermostat that changes a flow amount of the cooling water flowing out of the block-side flow path. The cooling water flowing out of the block-side flow path is used as a heat source of first and second heater cores for heating air.
    Type: Application
    Filed: April 25, 2011
    Publication date: October 27, 2011
    Applicants: Nippon Soken, Inc., DENSO CORPORATION
    Inventors: Nobuharu Kakehashi, Michio Nishikawa, Mitsunobu Uchida
  • Publication number: 20110214627
    Abstract: An internal combustion engine has a cylinder-head-passage through which an engine coolant flows toward a water jacket when a water pump is operated. The water pump is an electric water pump utilizing the electric power charged in the battery. A radiator is provided in the cylinder-head-passage. Even after the engine is shut off, the water pump is kept driven.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 8, 2011
    Applicant: DENSO CORPORATION
    Inventors: Michio NISHIKAWA, Nobuharu KAKEHASHI, Koji OTA