Patents by Inventor Nobuhiko Matsumoto

Nobuhiko Matsumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110206551
    Abstract: A process for producing ferrous sintered alloy according to the present invention is characterized in that it is equipped with: a compaction step of pressure compacting a raw-material powder in which an Fe-system powder is mixed with a reinforcement powder, thereby turning the raw-material powder into a powder compact; and a sintering step of heating this powder compact in an oxidation preventive atmosphere, thereby sintering the powder compact; and said reinforcement powder is an Fe—Mn—Si—C powder comprising an Fe alloy or an Fe compound that includes: Mn in an amount of from 58 to 70%; Si in an amount making a compositional ratio of the Mn with respect to the Si (i.e., Mn/Si) that is from 3.3 to 4.6; and C in an amount of from 1.5 to 3%; when the entirety is taken as 100% by mass. This Fe—Mn—Si—C powder is procurable inexpensively relatively; besides, ferrous sintered alloys, which are obtained using that, are better in terms of various characteristics than are conventional ferrous sintered alloys.
    Type: Application
    Filed: November 6, 2009
    Publication date: August 25, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mikio Kondoh, Toshitake Miyake, Shigehide Takemoto, Kimihiko Ando, Nobuhiko Matsumoto
  • Publication number: 20100310405
    Abstract: A ferrous sintered alloy includes a sintered raw-material powder that is made of an Fe—Cr—Mo-system powder, a carbon-system powder and an Mn—Si-system powder before sintering. The ferrous sintered alloy exhibits a density of 7.4 g/cm3 or more, and has a metallic structure that includes martensite and bainite. In the metallic structure, the martensite accounts for an area proportion of 40% or less when the entirety of the metallic structure is taken as 100% by area. Moreover, the martensite exhibits a particle diameter of 20 ?m or less. The ferrous sintered alloy is good in terms of machinability.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 9, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mikio KONDOH, Toshitake MIYAKE, Kimihiko ANDO, Hideo HANZAWA, Nobuhiko MATSUMOTO
  • Publication number: 20100263428
    Abstract: A fixing device is configured by: a pushing device of the die unit capable of pushing the die unit from ahead in the direction of extrusion; and a pressing device of the die unit capable of pressing a die ring and the die cassette from above in a direction intersecting the direction of extrusion. The fixing device of the die unit is arranged between the discard cutting device and an end platen and at the same time, the pressing device of the die unit is provided with a fixing metal fitting of the pushing device of the die unit and a pressing metal fitting of the die ring and when the pressing device of the die unit operates and presses and fixes the die ring and the die cassette, the pushing device of the die is fixed.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 21, 2010
    Applicant: UBE MACHINERY CORPORATION, LTD.
    Inventors: Takeharu Yamamoto, Koji Nakano, Nobuhiko Matsumoto
  • Publication number: 20100074790
    Abstract: An iron-based sintered alloy of the present invention is an iron-based sintered alloy, which is completed by sintering a powder compact made by press forming a raw material powder composed of Fe mainly, and is such that: when the entirety is taken as 100% by mass, carbon is 0.1-1.0% by mass; Mn is 0.01-1.5% by mass; the sum of the Mn and Si is 0.02-3.5% by mass; and the major balance is Fe. It was found out that, by means of an adequate amount of Mn and Si, iron-based sintered alloys are strengthened and additionally a good dimensional stability is demonstrated. As a result, it is possible to suppress or obsolete the employment of Cu or Ni, which has been believed to be essential virtually, the recyclability of iron-based sintered alloys can be enhanced, and further their cost reduction can be intended.
    Type: Application
    Filed: December 2, 2009
    Publication date: March 25, 2010
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mikio KONDOH, Nobuhiko Matsumoto, Toshitake Miyake, Shigehide Takemoto, Hitoshi Tanino
  • Publication number: 20080233421
    Abstract: There is provided an iron-based sintered material resistant to the metal fatigue developing from the voids therein functioning as the initial points and improved in the strength and machinability thereof. An iron-based sintered material, including a mixed structure of martensite, bainite, and pearlite and multiple voids formed in the mixed structure, wherein the ratio of martensite and bainite in the mixed structure is 70% or more; the ratio of martensite and/or bainite in the mixed structure forming the void surface is 90% or more; and the density of the iron-based sintered material is 7.4 g/cm3 or more.
    Type: Application
    Filed: March 21, 2008
    Publication date: September 25, 2008
    Inventors: Hitoshi TANINO, Kimihiko ANDO, Shinya OMURA, Toshitake MIYAKE, Mikio KONDOH, Nobuhiko MATSUMOTO
  • Publication number: 20080025866
    Abstract: An iron-based sintered alloy of the present invention is an iron-based sintered alloy, which is completed by sintering a powder compact made by press forming a raw material powder composed of Fe mainly, and is such that: when the entirety is taken as 100% by mass, carbon is 0.1-1.0% by mass; Mn is 0.01-1.5% by mass; the sum of the Mn and Si is 0.02-3.5% by mass; and the major balance is Fe. It was found out that, by means of an adequate amount of Mn and Si, iron-based sintered alloys are strengthened and additionally a good dimensional stability is demonstrated. As a result, it is possible to suppress or obsolete the employment of Cu or Ni, which has been believed to be essential virtually, the recyclability of iron-based sintered alloys can be enhanced, and further their cost reduction can be intended.
    Type: Application
    Filed: April 22, 2005
    Publication date: January 31, 2008
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mikio Kondoh, Nobuhiko Matsumoto, Toshitake Miyake, Shigehide Takemoto, Hitoshi Tanino
  • Patent number: 6309699
    Abstract: The invention provides a method of producing an oxidation-resistant metallic part which exhibits oxidation resistance even in an oxidation atmosphere. The method includes the step of applying mechanical energy to a surface of a metallic part in the presence of particulates, and forming a protective coating in a surface of the metallic part. When the metallic part thus treated is exposed in a high temperature-oxidation atmosphere, the protective coating is oxidized to restrain the proceeding of the oxidation of the metallic part, that is the internally proceeding formation of TiO2, thus serving a remarkable improvement of the oxidation resistance.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: October 30, 2001
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hiroyuki Kawaura, Hiroshi Kawahara, Takashi Saito, Kazuaki Nishino, Nobuhiko Matsumoto, Tadahiko Furuta
  • Publication number: 20010001968
    Abstract: The invention provides a method of producing an oxidation-resistant metallic part which exhibits sufficiently good oxidation resistance even in an oxidation atmosphere. The method includes the step of applying mechanical energy to a surface of a metallic part in the presence of particulates, and forming a protective coating in a surface of the metallic part. When the metallic part thus treated is exposed in a high temperature-oxidation atmosphere, the protective coating is oxidized to restrain the proceeding of the oxidation of the metallic part, that is the internally proceeding formation of TiO 2, thus serving a remarkable improvement of the oxidation resistance.
    Type: Application
    Filed: February 22, 1999
    Publication date: May 31, 2001
    Inventors: HIROYUKI KAWAURA, HIROSHI KAWAHARA, TAKASHI SAITO, KAZUAKI NISHINO, NOBUHIKO MATSUMOTO, TADAHIKO FURUTA