Patents by Inventor Nobuyuki Kambe
Nobuyuki Kambe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9448331Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.Type: GrantFiled: March 2, 2015Date of Patent: September 20, 2016Assignee: NanoGram CorporationInventors: Nobuyuki Kambe, Shivkumar Chiruvolu
-
Patent number: 9199435Abstract: Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical, optical and electro-optical devices can be formed from the composites.Type: GrantFiled: September 14, 2012Date of Patent: December 1, 2015Assignee: NanoGram CorporationInventors: Nobuyuki Kambe, Shivkumar Chiruvol
-
Patent number: 9175174Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.Type: GrantFiled: October 28, 2013Date of Patent: November 3, 2015Assignee: NanoGram CorporationInventor: Nobuyuki Kambe
-
Publication number: 20150168602Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.Type: ApplicationFiled: March 2, 2015Publication date: June 18, 2015Inventors: Nobuyuki Kambe, Shivkumar Chiruvolu
-
Patent number: 9000083Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.Type: GrantFiled: December 2, 2013Date of Patent: April 7, 2015Assignee: NanoGram CorporationInventor: Nobuyuki Kambe
-
Publication number: 20140084222Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.Type: ApplicationFiled: December 2, 2013Publication date: March 27, 2014Applicant: NanoGram CorporationInventor: Nobuyuki Kambe
-
Publication number: 20140047996Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.Type: ApplicationFiled: October 28, 2013Publication date: February 20, 2014Applicant: NanoGram CorporationInventor: Nobuyuki Kambe
-
Patent number: 8648136Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.Type: GrantFiled: October 5, 2010Date of Patent: February 11, 2014Assignee: NanoGram CorporationInventors: Nobuyuki Kambe, Christian C. Honeker, Yigal Dov Blum, David Brent MacQueen
-
Patent number: 8623951Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.Type: GrantFiled: August 24, 2012Date of Patent: January 7, 2014Assignee: NanoGram CorporationInventor: Nobuyuki Kambe
-
Patent number: 8568684Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.Type: GrantFiled: January 13, 2010Date of Patent: October 29, 2013Assignee: NanoGram CorporationInventors: Xiangxin Bi, Nobuyuki Kambe, James T. Gardner, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William E. McGovern
-
Patent number: 8515232Abstract: Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical, optical and electro-optical devices can be formed from the composites.Type: GrantFiled: August 24, 2010Date of Patent: August 20, 2013Assignee: NanoGram CorporationInventors: Nobuyuki Kambe, Yigal Do Blum, Benjamin Chaloner-Gill, Shivkumar Chiruvol, Sujeet Kumar, David Brent MacQueen
-
Publication number: 20130190438Abstract: Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical, optical and electro-optical devices can be formed from the composites.Type: ApplicationFiled: September 14, 2012Publication date: July 25, 2013Inventors: Nobuyuki Kambe, Yigal Do Blum, Benjamin Chaloner-Gill, Shivkumar Chiruvol, Sujeet Kumar, David Brent MacQueen
-
Patent number: 8435477Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.Type: GrantFiled: September 22, 2011Date of Patent: May 7, 2013Assignee: NanoGram CorporationInventors: Nobuyuki Kambe, Shivkumar Chiruvolu
-
Publication number: 20130012636Abstract: Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical, optical and electro-optical devices can be formed from the composites.Type: ApplicationFiled: September 14, 2012Publication date: January 10, 2013Inventors: Nobuyuki Kambe, Yigal Do Blum, Benjamin Chaloner-Gill, Shivkumar Chiruvol, Sujeet Kumar, David Brent MacQueen
-
Publication number: 20120319053Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.Type: ApplicationFiled: August 24, 2012Publication date: December 20, 2012Inventors: Nobuyuki Kambe, Christian C. Honeker, Yigal Dov Blum, David Brent MacQueen
-
Publication number: 20120244060Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.Type: ApplicationFiled: January 13, 2010Publication date: September 27, 2012Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William E. McGovern, Pierre J. DeMascarel, Robert B. Lynch
-
Patent number: 8119233Abstract: Functional composite materials comprise elemental inorganic particles within an organic matrix. The elemental inorganic materials generally comprise elemental metal, elemental metalloid, alloys thereof, or mixtures thereof. In alternative or additional embodiments, the inorganic particles can comprise a metal oxide, a metalloid oxide, a combination thereof or a mixture thereof. The inorganic particles can have an average primary particle size of no more than abut 250 nm and a secondary particle size in a dispersion when blended with the organic matrix of no more than about 2 microns. The particles can be substantially unagglomerated within the composite. The organic binder can be a functional polymer such as a semiconducting polymer. The inorganic particles can be surface modified, such as with a moiety having an aromatic functional group for desirable interactions with a semiconducting polymer. Appropriate solution based methods can be used for forming the composite from dispersions of the particles.Type: GrantFiled: February 14, 2008Date of Patent: February 21, 2012Assignee: NanoGram CorporationInventors: Shivkumar Chiruvolu, Vladimir K. Dioumaev, Nobuyuki Kambe, Hui Du
-
Publication number: 20120012032Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.Type: ApplicationFiled: September 22, 2011Publication date: January 19, 2012Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William E. McGovern, Pierre J. DeMascarel, Robert B. Lynch
-
Patent number: 8048523Abstract: Nanoscale UV absorbing particles are described that have high UV absorption cross sections while being effectively transparent to visible light. These particles can be used to shield individuals from harmful ultraviolet radiation. These particles can also be used in industrial processing especially to produce solid state electronic devices by creating edges of photoresist material with a high aspect ratio. The UV absorbing particles can also be used as photocatalysts that become strong oxidizing agents upon exposure to UV light. Laser pyrolysis provides an efficient method for the production of suitable particles.Type: GrantFiled: May 26, 2009Date of Patent: November 1, 2011Assignee: NanoGram CorporationInventors: Nobuyuki Kambe, Xiangxin Bi
-
Patent number: 7972691Abstract: Successful dispersion approaches are described for the formation of dispersion of dry powders of inorganic particles. In some embodiments, it is desirable to form the dispersion in two processing steps in which the particles are surface modified in the second processing step. Composites can be formed using the well dispersed particles to form improved inorganic particle-polymer composites. These composites are suitable for optical applications and for forming transparent films, which can have a relatively high index or refraction. In some embodiments, water can be used to alter the surface chemistry of metal oxide particles.Type: GrantFiled: December 22, 2006Date of Patent: July 5, 2011Assignee: NanoGram CorporationInventors: Shivkumar Chiruvolu, Hui Du, Nobuyuki Kambe