Patents by Inventor Nobuyuki Kambe

Nobuyuki Kambe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080003522
    Abstract: Nanoscale UV absorbing particles are described that have high UV absorption cross sections while being effectively transparent to visible light. These particles can be used to shield individuals from harmful ultraviolet radiation. These particles can also be used in industrial processing especially to produce solid state electronic devices by creating edges of photoresist material with a high aspect ratio. The UV absorbing particles can also be used as photocatalysts that become strong oxidizing agents upon exposure to UV light. Laser pyrolysis provides an efficient method for the production of suitable particles.
    Type: Application
    Filed: February 2, 2007
    Publication date: January 3, 2008
    Inventors: Nobuyuki Kambe, Xiangxin Bi
  • Publication number: 20070215837
    Abstract: Collections of phosphor particles have achieved improved performance based on improved material properties, such as crystallinity. Display devices can be formed with these improved submicron phosphor particles. Improved processing methods contribute to the improved phosphor particles, which can have high crystallinity and a high degree of particle size uniformity. Dispersions and composites can be effectively formed from the powders of the submicron particle collections.
    Type: Application
    Filed: March 13, 2007
    Publication date: September 20, 2007
    Inventors: Shivkumar Chiruvolu, Weidong Li, Igor Altman, Hui Du, Nobuyuki Kambe, Ronald J. Mosso
  • Publication number: 20070208123
    Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
    Type: Application
    Filed: April 27, 2007
    Publication date: September 6, 2007
    Inventors: Nobuyuki Kambe, Christian Honeker, Yigal Blum, David MacQueen
  • Publication number: 20070202319
    Abstract: Photosensitive optical materials are used for establishing more versatile approaches for optical device formation. In some embodiments, unpatterned light is used to shift the index-of-refraction of planar optical structures to shift the index-of-refraction of the photosensitive material to a desired value. This approach can be effective to produce cladding material with a selected index-of-refraction. In additional embodiments gradients in index-of-refraction are formed using photosensitive materials. In further embodiments, the photosensitive materials are patterned within the planar optical structure. Irradiation of the photosensitive material can selectively shift the index-of-refraction of the patterned photosensitive material. By patterning the light used to irradiate the patterned photosensitive material, different optical devices can be selectively activated within the optical structure.
    Type: Application
    Filed: April 30, 2007
    Publication date: August 30, 2007
    Inventors: Michael Bryan, Nobuyuki Kambe
  • Patent number: 7258706
    Abstract: Polishing compositions are described that are appropriate for fine polishing to very low tolerances. The polishing compositions include particles with small diameters with very narrow distributions in size and effectively no particles with diameters several times larger than the average diameter. Furthermore, the particles generally have very high uniformity with respect to having a single crystalline phase. Preferred particles have an average diameter less than about 200 nm. Laser pyrolysis processes are described for the production of the appropriate particles including metal oxides, metal carbides, metal sulfides, SiO2 and SiC.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: August 21, 2007
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Xiangxin Bi
  • Patent number: 7226966
    Abstract: Polymer-inorganic particle blends are incorporated into structures generally involving interfaces with additional materials that can be used advantageously for forming desirable devices. In some embodiments, the structures are optical structures, and the interfaces are optical interfaces. The different materials at the interface can have differences in index-of-refraction to yield desired optical properties at the interface. In some embodiments, structures are formed with periodic variations in index-of-refraction. In particular, photonic crystals can be formed. Suitable methods can be used to form the desired structures.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: June 5, 2007
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Christian C. Honeker
  • Patent number: 7224882
    Abstract: Photosensitive optical materials are used for establishing more versatile approaches for optical device formation. In some embodiments, unpatterned light is used to shift the index-of-refraction of planar optical structures to shift the index-of-refraction of the photosensitive material to a desired value. This approach can be effective to produce cladding material with a selected index-of-refraction. In additional embodiments gradients in index-of-refraction are formed using, photosensitive materials. In further embodiments, the photosensitive materials are patterned within the planar optical structure. Irradiation of the photosensitive material can selectively shift the index-of-refraction of the patterned photosensitive material. By patterning the light used to irradiate the patterned photosensitive material, different optical devices can be selectively activated within the optical structure.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: May 29, 2007
    Assignee: NeoPhotonics Corporation
    Inventors: Michael A. Bryan, Nobuyuki Kambe
  • Patent number: 7214446
    Abstract: Batteries based on nanoparticles are demonstrated that achieve high energy densities. Vanadium oxide nanoparticles can have several different stoichiometries and corresponding crystal lattices. The nanoparticles preferably have average diameters less than about 500 nm and more preferably less than about 150 nm. Cathodes produced using the vanadium oxide nanoparticles and a binder can be used to construct lithium batteries or lithium ion batteries. The nanoparticles may have energy densities greater than about 900 Wh/kg.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: May 8, 2007
    Assignee: NanoGram Corporation
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Sujeet Kumar, James T. Gardner
  • Publication number: 20070003694
    Abstract: Methods involve in-flight processing of inorganic particles synthesized within the flow. Thus, the flow extends from an inlet connected to a reactant delivery system with inorganic particle precursors to a collector. The as formed inorganic particle can be modified with radiation and/or the application of a coating composition. Additional processing steps can be introduced as desired. Suitable apparatuses for in-flight processing can be based on addition of processing elements onto an inorganic synthesis reactor, such as a laser pyrolysis reactor.
    Type: Application
    Filed: May 22, 2006
    Publication date: January 4, 2007
    Inventors: Shivkumar Chiruvolu, Hui Du, William McGovern, Ronald Mosso, Nobuyuki Kambe
  • Publication number: 20060286378
    Abstract: Collections of composite particles comprise inorganic particles and another composition, such as a polymer and/or a coating composition. In some embodiments, the composite particles have small average particle sizes, such as no more than about 10 microns or no more than about 2.5 microns. The composite particles can have selected particle architectures. The inorganic particles can have compositions selected for particular properties. The composite particles can be effective for printing applications, for the formation of optical coatings, and other desirable applications.
    Type: Application
    Filed: May 22, 2006
    Publication date: December 21, 2006
    Inventors: Shivkumar Chiruvolu, Hui Du, William McGovern, Craig Horne, Ronald Mosso, Nobuyuki Kambe
  • Patent number: 7132783
    Abstract: Small particles provide for improved performance as phosphors especially in the production of display devices. Particles with an diameter less than about 100 nm have altered band properties that affect the emission by the particles. A collection of such small particles with a narrow distribution around a selected average diameter can be used to produce emission at a desired frequency. These particles are effective for producing a wide variety of display types including flat panel displays. Laser pyrolysis provides an efficient process for the production of desired particles.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: November 7, 2006
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Xiangxin Bi
  • Publication number: 20060147369
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Application
    Filed: February 17, 2006
    Publication date: July 6, 2006
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig Horne, James Gardner, Ronald Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William McGovern, Pierre DeMascarel, Robert Lynch
  • Publication number: 20060132020
    Abstract: Small particles provide for improved performance as phosphors especially in the production of display devices. Particles with a diameter less than about 100 nm have altered band properties that affect the emission by the particles. A collection of such small particles with a narrow distribution around a selected average diameter can be used to produce emission at a desired frequency. These particles are effective for producing a wide variety of display types including flat panel displays. Laser pyrolysis provides an efficient process for the production of desired particles.
    Type: Application
    Filed: January 25, 2006
    Publication date: June 22, 2006
    Inventors: Nobuyuki Kambe, Xiangxin Bi
  • Publication number: 20050271805
    Abstract: A material includes a layer with a plurality of self-assembled structures comprising compositions. The structures are localized in separate islands covering a portion of the layer in an integrated assembly. In some embodiments, the compositions include nanoparticles. In particular, some embodiments pertain to a material with a self-assembled formation of inorganic particles with an average diameter less than about 100 nm. The structures can be used as devices within an integrated article. The method for producing the articles comprises a localization process defining boundaries of the devices and a self-assembly process within the identified boundaries.
    Type: Application
    Filed: February 24, 2005
    Publication date: December 8, 2005
    Inventors: Nobuyuki Kambe, Peter Dardi
  • Publication number: 20050232878
    Abstract: Nanoscale UV absorbing particles are described that have high UV absorption cross sections while being effectively transparent to visible light. These particles can be used to shield individuals from harmful ultraviolet radiation. These particles can also be used in industrial processing especially to produce solid state electronic devices by creating edges of photoresist material with a high aspect ratio. The UV absorbing particles can also be used as photocatalysts that become strong oxidizing agents upon exposure to LV light. Laser pyrolysis provides an efficient method for the production of suitable particles.
    Type: Application
    Filed: June 8, 2005
    Publication date: October 20, 2005
    Inventors: Nobuyuki Kambe, Xiangxin Bi
  • Publication number: 20050170192
    Abstract: Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical optical and electro-optical devices can be formed from the composites.
    Type: Application
    Filed: April 4, 2005
    Publication date: August 4, 2005
    Inventors: Nobuyuki Kambe, Yigal Blum, Benjamin Chaloner-Gill, Shivkumar Chiruvolua, Sujeet Kumar, David McQueen
  • Publication number: 20050132659
    Abstract: A collection of nanoparticles of aluminum oxide have been produced by laser pyrolysis have a very narrow distribution of particle diameters. Preferably, the distribution of particle diameters effectively does not have a tail such that almost no particles have a diameter greater than about 4 times the average diameter. The pyrolysis preferably is performed by generating a molecular stream containing an aluminum precursor, an oxidizing agent and an infrared absorber. The pyrolysis can be performed with an infrared laser such as a CO2 laser.
    Type: Application
    Filed: January 28, 2005
    Publication date: June 23, 2005
    Inventors: Sujeet Kumar, Hariklia Reitz, Xiangxin Bi, Nobuyuki Kambe
  • Patent number: 6890624
    Abstract: A material includes a layer with a plurality of self-assembled structures comprising compositions. The structures are localized in separate islands covering a portion of the layer in an integrated assembly. In some embodiments, the compositions include nanoparticles. In particular, some embodiments pertain to a material with a self-assembled formation of inorganic particles with an average diameter less than about 100 nm. The structures can be used as devices within an integrated article. The method for producing the articles comprise a localization process defining boundaries of the devices and a self-assembly process within the identified boundaries.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: May 10, 2005
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Peter S. Dardi
  • Patent number: 6881490
    Abstract: Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical, optical and electro-optical devices can be formed from the composites.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: April 19, 2005
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Yigal Dov Blum, Benjamin Chaloner-Gill, Shivkumar Chiruvolu, Sujeet Kumar, David Brent MacQueen
  • Publication number: 20040105163
    Abstract: Photosensitive optical materials are used for establishing more versatile approaches for optical device formation. In some embodiments, unpatterned light is used to shift the index-of-refraction of planar optical structures to shift the index-of-refraction of the photosensitive material to a desired value. This approach can be effective to produce cladding material with a selected index-of-refraction. In additional embodiments gradients in index-of-refraction are formed using, photosensitive materials. In further embodiments, the photosensitive materials are patterned within the planar optical structure. Irradiation of the photosensitive material can selectively shift the index-of-refraction of the patterned photosensitive material. By patterning the light used to irradiate the patterned photosensitive material, different optical devices can be selectively activated within the optical structure.
    Type: Application
    Filed: July 15, 2003
    Publication date: June 3, 2004
    Inventors: Michael A. Bryan, Nobuyuki Kambe