Patents by Inventor Noren Pan

Noren Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901476
    Abstract: The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: February 13, 2024
    Assignee: MICROLINK DEVICES, INC.
    Inventors: Noren Pan, Glen Hillier, Duy Phach Vu, Rao Tatavarti, Christopher Youtsey, David McCallum, Genevieve Martin
  • Publication number: 20210323689
    Abstract: Some embodiments include a high efficiency, lightweight solar sheet. Some embodiments include a solar sheet configured for installation on a surface of a UAV or on a surface of a component of a UAV. The solar sheet includes a plurality of solar cells and a polymer layer to which the plurality of solar cells are attached. Some embodiments include a kit for supplying solar power in a battery-powered or fuel cell powered unmanned aerial vehicle (UAV) by incorporating flexible solar cells into a component of a UAV, affixing flexible solar cells to a surface of a UAV, or affixing flexible solar cells to a surface of a component of a UAV. The kit also includes a power conditioning system configured to operate the solar cells within a desired power range and configured to provide power having a voltage compatible with an electrical system of the UAV.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 21, 2021
    Inventors: Noren Pan, Raymond Chan, Haruki Miyamoto, Andree Wibowo, Mark Osowski, Christopher Youtsey, David McCallum
  • Publication number: 20210328093
    Abstract: The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.
    Type: Application
    Filed: February 8, 2021
    Publication date: October 21, 2021
    Inventors: Noren Pan, Glen Hillier, Duy Phach Vu, Rao Tatavarti, Christopher Youtsey, David McCallum, Genevieve Martin
  • Patent number: 10923617
    Abstract: The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: February 16, 2021
    Assignee: MICROLINK DEVICES, INC.
    Inventors: Noren Pan, Glen Hillier, Duy Phach Vu, Rao Tatavarti, Christopher Youtsey, David McCallum, Genevieve Martin
  • Publication number: 20190322376
    Abstract: Some embodiments include a high efficiency, lightweight solar sheet. Some embodiments include a solar sheet configured for installation on a surface of a UAV or on a surface of a component of a UAV. The solar sheet includes a plurality of solar cells and a polymer layer to which the plurality of solar cells are attached. Some embodiments include a kit for supplying solar power in a battery-powered or fuel cell powered unmanned aerial vehicle (UAV) by incorporating flexible solar cells into a component of a UAV, affixing flexible solar cells to a surface of a UAV, or affixing flexible solar cells to a surface of a component of a UAV. The kit also includes a power conditioning system configured to operate the solar cells within a desired power range and configured to provide power having a voltage compatible with an electrical system of the UAV.
    Type: Application
    Filed: February 22, 2019
    Publication date: October 24, 2019
    Inventors: Noren Pan, Raymond Chan, Haruki Miyamoto, Andree Wibowo, Mark Osowski, Christopher Youtsey, David McCallum
  • Patent number: 10214295
    Abstract: Some embodiments include a high efficiency, lightweight solar sheet. Some embodiments include a solar sheet configured for installation on a surface of a UAV or on a surface of a component of a UAV. The solar sheet includes a plurality of solar cells and a polymer layer to which the plurality of solar cells are attached. Some embodiments include a kit for supplying solar power in a battery-powered or fuel cell powered unmanned aerial vehicle (UAV) by incorporating flexible solar cells into a component of a UAV, affixing flexible solar cells to a surface of a UAV, or affixing flexible solar cells to a surface of a component of a UAV. The kit also includes a power conditioning system configured to operate the solar cells within a desired power range and configured to provide power having a voltage compatible with an electrical system of the UAV.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: February 26, 2019
    Assignee: MICROLINK DEVICES, INC.
    Inventors: Noren Pan, Raymond Chan, Haruki Miyamoto, Andree Wibowo, Mark Osowski, Christopher Youtsey, David McCallum
  • Patent number: 9887018
    Abstract: A device for producing electricity. The device comprises an indium gallium phosphide semiconductor material comprising a plurality of indium gallium phosphide material layers each layer having different dopant concentrations and doped with either n-type dopants or p-type dopants, a first terminal on a first surface of the semiconductor material, a beta particle source proximate the first surface for emitting beta particles that penetrate into the semiconductor material, and a second terminal on a second surface of the semiconductor material; the semiconductor material for producing current between the first and second terminals responsive to the beta particles penetrating into the semiconductor material.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: February 6, 2018
    Assignee: City Labs, Inc.
    Inventors: Peter Cabauy, Larry C Olsen, Noren Pan
  • Publication number: 20170305564
    Abstract: Some embodiments include a high efficiency, lightweight solar sheet. Some embodiments include a solar sheet configured for installation on a surface of a UAV or on a surface of a component of a UAV. The solar sheet includes a plurality of solar cells and a polymer layer to which the plurality of solar cells are attached. Some embodiments include a kit for supplying solar power in a battery-powered or fuel cell powered unmanned aerial vehicle (UAV) by incorporating flexible solar cells into a component of a UAV, affixing flexible solar cells to a surface of a UAV, or affixing flexible solar cells to a surface of a component of a UAV. The kit also includes a power conditioning system configured to operate the solar cells within a desired power range and configured to provide power having a voltage compatible with an electrical system of the UAV.
    Type: Application
    Filed: May 8, 2017
    Publication date: October 26, 2017
    Inventors: Noren Pan, Raymond Chan, Haruki Miyamoto, Andree Wibowo, Mark Osowski, Christopher Youtsey, David McCallum
  • Patent number: 9799419
    Abstract: A device for producing electricity. In one embodiment the device comprises a germanium substrate doped a first dopant type and a plurality of stacked material layers above the substrate. These stacked material layers further comprise an InGaP base layer doped the first dopant type, an InGaP emitter layer doped the second dopant type, a window layer having a lattice structure matched to the lattice structure of the emitter layer and doped the second dopant type and a beta particle source for generating beta particles.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: October 24, 2017
    Assignee: City Labs, Inc.
    Inventors: Peter Cabauy, Larry C Olsen, Noren Pan
  • Patent number: 9650148
    Abstract: Some embodiments include a kit for supplying solar power in a battery-powered or fuel cell powered unmanned aerial vehicle (UAV) by incorporating flexible solar cells into a component of a UAV, affixing flexible solar cells to a surface of a UAV, or affixing flexible solar cells to a surface of a component of a UAV. The kit also includes a power conditioning system configured to operate the solar cells within a desired power range and configured to provide power having a voltage compatible with an electrical system of the UAV. Another embodiments include a solar sheet configured for installation on a surface of a UAV or on a surface of a component of a UAV. The solar sheet includes a plurality of solar cells and a polymer layer to which the plurality of solar cells are attached.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: May 16, 2017
    Assignee: MICROLINK DEVICES, INC.
    Inventors: Noren Pan, Raymond Chan, Haruki Miyamoto, Andree Wibowo, Mark Osowski, Christopher Youtsey, David McCallum
  • Publication number: 20170092385
    Abstract: A device for producing electricity. The device comprises an indium gallium phosphide semiconductor material comprising a plurality of indium gallium phosphide material layers each layer having different dopant concentrations and doped with either n-type dopants or p-type dopants, a first terminal on a first surface of the semiconductor material, a beta particle source proximate the first surface for emitting beta particles that penetrate into the semiconductor material, and a second terminal on a second surface of the semiconductor material; the semiconductor material for producing current between the first and second terminals responsive to the beta particles penetrating into the semiconductor material.
    Type: Application
    Filed: October 6, 2016
    Publication date: March 30, 2017
    Applicant: City Labs, Inc.
    Inventors: Peter Cabauy, Larry C. Olsen, Noren Pan
  • Publication number: 20170015430
    Abstract: Some embodiments include a kit for supplying solar power in a battery-powered or fuel cell powered unmanned aerial vehicle (UAV) by incorporating flexible solar cells into a component of a UAV, affixing flexible solar cells to a surface of a UAV, or affixing flexible solar cells to a surface of a component of a UAV. The kit also includes a power conditioning system configured to operate the solar cells within a desired power range and configured to provide power having a voltage compatible with an electrical system of the UAV. Another embodiments include a solar sheet configured for installation on a surface of a UAV or on a surface of a component of a UAV. The solar sheet includes a plurality of solar cells and a polymer layer to which the plurality of solar cells are attached.
    Type: Application
    Filed: April 18, 2016
    Publication date: January 19, 2017
    Inventors: Noren Pan, Raymond Chan, Haruki Miyamoto, Andree Wibowo, Mark Osowski, Christopher Youtsey, David McCallum
  • Patent number: 9466401
    Abstract: A device for producing electricity. The device comprises an indium gallium phosphide semiconductor material comprising a plurality of indium gallium phosphide material layers each layer having different dopant concentrations and doped with either n-type dopants or p-type dopants, a first terminal on a first surface of the semiconductor material, a beta particle source proximate the first surface for emitting beta particles that penetrate into the semiconductor material, and a second terminal on a second surface of the semiconductor material; the semiconductor material for producing current between the first and second terminals responsive to the beta particles penetrating into the semiconductor material.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: October 11, 2016
    Assignee: City Labs, Inc.
    Inventors: Peter Cabauy, Larry C Olsen, Noren Pan
  • Patent number: 9356162
    Abstract: The present application utilizes an oxidation process to fabricating a Group III-V compound semiconductor solar cell device. By the oxidation process, a window layer disposed on a cell unit is oxidized to enhance the efficiency of the solar cell device. The oxidized window has an increased band gap to minimize the surface recombination of electrons and holes. The oxidized window also improves transparency at the wavelengths that were absorbed in the conventional window layer.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: May 31, 2016
    Assignee: MicroLink Devices, Inc.
    Inventors: Noren Pan, Christopher Youtsey, David S. McCallum, Victor C. Elarde, John M. Dallesasse
  • Patent number: 9315267
    Abstract: Some embodiments include a kit for increasing endurance of a battery-powered unmanned aerial vehicle (UAV) by incorporating flexible solar cells or applying flexible solar cells on a surface of a UAV or on a surface of a component of a UAV. The kit further include a power conditioning system configured to operate the solar cells within a desired power range and configured to provide power having a voltage compatible with an electrical system of the UAV.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 19, 2016
    Assignee: MICROLINK DEVICES, INC.
    Inventors: Noren Pan, Raymond Chan, Haruki Miyamoto, Andree Wibowo, Mark Osowski, Christopher Youtsey, David McCallum
  • Publication number: 20150310952
    Abstract: A device for producing electricity. In one embodiment the device comprises a germanium substrate doped a first dopant type and a plurality of stacked material layers above the substrate. These stacked material layers further comprise an InGaP base layer doped the first dopant type, an InGaP emitter layer doped the second dopant type, a window layer having a lattice structure matched to the lattice structure of the emitter layer and doped the second dopant type and a beta particle source for generating beta particles.
    Type: Application
    Filed: February 17, 2015
    Publication date: October 29, 2015
    Inventors: Peter Cabauy, Larry C. Olsen, Noren Pan
  • Patent number: 8912631
    Abstract: A heterojunction bipolar transistor (HBT) is provided with an improved on-state breakdown voltage VCE. The improvement of the on-state breakdown voltage for the HBT improves the output power characteristics of the HBT and the ability of the HBT to withstand large impedance mismatch (large VSWR). The improvement in the on-state breakdown voltage is related to the suppression of high electric fields adjacent a junction of a collector layer and a sub-collector layer forming a collector region of the HBT.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: December 16, 2014
    Assignee: MicroLink Devices, Inc.
    Inventors: Noren Pan, Andree Wibowo
  • Publication number: 20130285440
    Abstract: Some embodiments include a kit for increasing endurance of a battery-powered unmanned aerial vehicle (UAV) by incorporating flexible solar cells or applying flexible solar cells on a surface of a UAV or on a surface of a component of a UAV. The kit further include a power conditioning system configured to operate the solar cells within a desired power range and configured to provide power having a voltage compatible with an electrical system of the UAV.
    Type: Application
    Filed: February 15, 2013
    Publication date: October 31, 2013
    Inventors: Noren Pan, Raymond Chan, Haruki Miyamoto, Andree Wibowo, Mark Osowski, Christopher Youtsey, David McCallum
  • Patent number: 8487507
    Abstract: A multilayer device for producing electricity. The device comprising a betavoltaic source layer for generating beta particles, and at least three semiconductor layers each having a bandgap substantially similar to a band gap of the other layers, the at least three layers comprising a doped top layer, an undoped intermediate layer and a doped bottom layer, wherein the top and the bottom layers are doped with opposite-type dopants, and wherein the top layer is closer to the betavoltaic source layer than the bottom layer.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: July 16, 2013
    Inventors: Peter Cabauy, Larry C. Olsen, Noren Pan
  • Patent number: 8450162
    Abstract: Methods and systems for fabricating an integrated BiFET using two separate growth procedures are disclosed. Performance of the method fabricates the FET portion of the BiFET in a first fabrication environment. Performance of the method fabricates the HBT portion of the BiFET in a second fabrication environment. By separating the fabrication of the FET portion and the HBT portion in two or more separate reactors, the optimum device performance can be achieved for both devices.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: May 28, 2013
    Assignee: MicroLink Devices, Inc.
    Inventors: Noren Pan, Andree Wibowo