Patents by Inventor Norihiko Hamada

Norihiko Hamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7138018
    Abstract: A method for manufacturing an anisotropic magnet powder includes a high-temperature hydrogenation process of holding an RFeB-based alloy containing rare earth elements (R), B and Fe as main ingredients in a treating atmosphere under a first treating pressure (P1) of which a hydrogen partial pressure ranges from 10 to 100 kPa and at a first treating temperature (T1) which ranges from 953 to 1133 K, a structure stabilization process of holding the RFeB-based alloy after the high-temperature hydrogenation process under a second treating pressure (P2) of which a hydrogen partial pressure is 10 or more and at a second treating temperature (T2) which ranges from 1033 to 1213 K such that the condition T2>T1 or P2>P1 is satisfied, a controlled evacuation process of holding the RFeB-based alloy after the structure stabilization process in a treating atmosphere under a third treating pressure (P3) of which a hydrogen partial pressure ranges from 0.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: November 21, 2006
    Assignee: Aichi Steel Corporation
    Inventors: Yoshinobu Honkura, Norihiko Hamada, Chisato Mishima
  • Publication number: 20060048855
    Abstract: A method for manufacturing an anisotropic magnet powder includes a high-temperature hydrogenation process of holding an RFeB-based alloy containing rare earth elements (R), B and Fe as main ingredients in a treating atmosphere under a first treating pressure (P1) of which a hydrogen partial pressure ranges from 10 to 100 kPa and at a first treating temperature (T1) which ranges from 953 to 1133 K, a structure stabilization process of holding the RFeB-based alloy after the high-temperature hydrogenation process under a second treating pressure (P2) of which a hydrogen partial pressure is 10 or more and at a second treating temperature (T2) which ranges from 1033 to 1213 K such that the condition T2>T1 or P2>P1 is satisfied, a controlled evacuation process of holding the RFeB-based alloy after the structure stabilization process in a treating atmosphere under a third treating pressure (P3) of which a hydrogen partial pressure ranges from 0.
    Type: Application
    Filed: January 15, 2004
    Publication date: March 9, 2006
    Inventors: Yoshinobu Honkura, Norihiko Hamada, Chisato Mishima
  • Patent number: 6955729
    Abstract: An alloy for bonded magnets of the present invention includes at least a main component of iron (Fe), 12-16 atomic % (at %) of rare-earth elements (R) including yttrium (Y), and 10.8-15 at % of boron (B), and is subjected to a hydrogen treatment method as HDDR process or d-HDDR process. Using the magnet powder obtained from carrying out d-HDDR processing, etc. on this magnet alloy, pellets with superior insertion characteristics into bonded magnet molding dies can be obtained, and bonded magnets with superior magnetic properties and showing low cost can be obtained.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: October 18, 2005
    Assignee: Aichi Steel Corporation
    Inventors: Yoshinobu Honkura, Norihiko Hamada, Chisato Mishima
  • Publication number: 20050076974
    Abstract: The bonded magnet of the present invention, in which average particle diameter and compounding ratio are specified, is comprised of Cobalt-less R1 d-HDDR coarse magnet powder that has been surface coated with surfactant, R2 fine magnet powder that has been surface coated with surfactant (R1 and R2 are rare-earth metals), and a resin which is a binder. The resin, a ferromagnetic buffer in which R2 fine magnet powder is uniformly dispersed, envelops the outside of the Cobalt-less R1 d-HDDR coarse magnet powder. Despite using Cobalt-less R1 d-HDDR anisotropic magnet powder, which is susceptible to fracturing and therefore vulnerable to oxidation, the bonded magnet of the present invention exhibits high magnetic properties along with extraordinary heat resistance.
    Type: Application
    Filed: November 18, 2003
    Publication date: April 14, 2005
    Applicant: AICHI STEEL CORPORATION
    Inventors: Yoshinobu Honkura, Norihiko Hamada, Hironari Mitarai, Kenji Noguchi
  • Publication number: 20050067052
    Abstract: An alloy for bonded magnet alloy of the present invention includes at least Fe as a main component, 11-15 at % rare-earth element (R) that includes yttrium (Y) and does not include lanthanum (La), 5.5-10.8 at % B and 0.01-1.0 at % La, and has superior corrosion resistance. Using the obtained magnet powder by applying the d-HDDR process etc. to this bonded magnet, bonded magnet with not only magnetic properties but also reliability such as corrosion resistance and heat resistance etc., can be achieved.
    Type: Application
    Filed: June 28, 2002
    Publication date: March 31, 2005
    Inventors: Yoshimobu Honkura, Norihiko Hamada, Chisato Mishima
  • Patent number: 6709533
    Abstract: This invention aims to provide a manufacturing method of an anisotropic magnet powder from which a bonded magnet with an improved loss of magnetization due to structural changes can be achieved. This is achieved by employing a low-temperature hydrogenation process, high-temperature hydrogenation process and the first evacuation process to an RFeB material (R: rare earth element) to manufacture a hydride powder (RFeBHx); the obtained RFeBHx powder (the precursory anisotropic magnet powder) is subsequently blended with a diffusion powder composed of hydride of dysprosium or the like and a diffusion heat-treatment process and a dehydrogenation process are employed. Through this series of processes, an anisotropic magnet powder with a great coercivity and a great degree of anisotropy can be achieved.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: March 23, 2004
    Assignee: Aichi Steel Corporation
    Inventors: Yoshinobu Honkura, Norihiko Hamada, Chisato Mishima
  • Publication number: 20030209294
    Abstract: An alloy for bonded magnets of the present invention includes at least a main component of iron (Fe), 12-16 atomic % (at %) of rare-earth elements (R) including yttrium (Y), and 10.8-15 at % of boron (B), and is subjected to a hydrogen treatment method as HDDR process or d-HDDR process.
    Type: Application
    Filed: January 27, 2003
    Publication date: November 13, 2003
    Applicant: Aichi Steel Corporation
    Inventors: Yoshinobu Honkura, Norihiko Hamada, Chisato Mishima
  • Publication number: 20030047240
    Abstract: This invention aims to provide a manufacturing method of an anisotropic magnet powder from which a bonded magnet with an improved loss of magnetization due to structural changes can be achieved. This is achieved by employing a low-temperature hydrogenation process, high-temperature hydrogenation process and the first evacuation process to an RFeB material (R: rare earth element) to manufacture a hydride powder (RFeBHx); the obtained RFeBHx powder (the precursory anisotropic magnet powder) is subsequently blended with a diffusion powder composed of hydride of dysprosium or the like and a diffusion heat-treatment process and a dehydrogenation process are employed. Through this series of processes, an anisotropic magnet powder with a great coercivity and a great degree of anisotropy can be achieved.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 13, 2003
    Applicant: AICHI STEEL CORPORATION
    Inventors: Yoshinobu Honkura, Norihiko Hamada, Chisato Mishima
  • Publication number: 20020059965
    Abstract: This invention aims to provide a manufacturing method of an anisotropic magnet powder from which a bonded magnet with an improved loss of magnetization due to structural changes can be achieved. This is achieved by employing a low-temperature hydrogenation process, high-temperature hydrogenation process and the first evacuation process to an RFeB material (R: rare earth element) to manufacture a hydride powder (RFeBHx); the obtained RFeBHx powder (the precursory anisotropic magnet powder) is subsequently blended with a diffusion powder composed of hydride of dysprosium or the like and a diffusion heat-treatment process and a dehydrogenation process are employed. Through this series of processes, an anisotropic magnet powder with a great coercivity and a great degree of anisotropy can be achieved.
    Type: Application
    Filed: September 19, 2001
    Publication date: May 23, 2002
    Applicant: AICHI STEEL CORPORATION
    Inventors: Yoshinobu Honkura, Norihiko Hamada, Chisato Mishima
  • Patent number: 4637611
    Abstract: A slot machine having a plurality of reels each of which is provided with an annular row of symbols on its periphery and is driven and stopped by a pulse motor associated therewith. The position of the respective reel can be detected by the content of a counter which counts the pulse signals fed to the pulse motor during revolution of the reel, the counter being reset to zero photoelectrically at the same point in each revolution of the reel.
    Type: Grant
    Filed: January 11, 1982
    Date of Patent: January 20, 1987
    Assignee: Kabushiki Kaisha Universal
    Inventor: Norihiko Hamada