Patents by Inventor Nyi O. Myo

Nyi O. Myo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240112945
    Abstract: In one embodiment, a susceptor for thermal processing is provided. The susceptor includes an outer rim surrounding and coupled to an inner dish, the outer rim having an inner edge and an outer edge. The susceptor further includes one or more structures for reducing a contacting surface area between a substrate and the susceptor when the substrate is supported by the susceptor. At least one of the one or more structures is coupled to the inner dish proximate the inner edge of the outer rim.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 4, 2024
    Inventors: Anhthu NGO, Zuoming ZHU, Balasubramanian RAMACHANDRAN, Paul BRILLHART, Edric TONG, Anzhong CHANG, Kin Pong LO, Kartik SHAH, Schubert S. CHU, Zhepeng CONG, James Francis MACK, Nyi O. MYO, Kevin Joseph BAUTISTA, Xuebin LI, Yi-Chiau HUANG, Zhiyuan YE
  • Patent number: 11848226
    Abstract: In one embodiment, a susceptor for thermal processing is provided. The susceptor includes an outer rim surrounding and coupled to an inner dish, the outer rim having an inner edge and an outer edge. The susceptor further includes one or more structures for reducing a contacting surface area between a substrate and the susceptor when the substrate is supported by the susceptor. At least one of the one or more structures is coupled to the inner dish proximate the inner edge of the outer rim.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: December 19, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Anhthu Ngo, Zuoming Zhu, Balasubramanian Ramachandran, Paul Brillhart, Edric Tong, Anzhong Chang, Kin Pong Lo, Kartik Shah, Schubert S. Chu, Zhepeng Cong, James Francis Mack, Nyi O. Myo, Kevin Joseph Bautista, Xuebin Li, Yi-Chiau Huang, Zhiyuan Ye
  • Patent number: 11821088
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for semiconductor processing, more particularly, to a thermal process chamber. The thermal process chamber includes a substrate support, a first plurality of heating elements disposed over or below the substrate support, and a spot heating module disposed over the substrate support. The spot heating module is utilized to provide local heating of cold regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate improves temperature profile, which in turn improves deposition uniformity.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: November 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Shu-Kwan Lau, Koji Nakanishi, Toshiyuki Nakagawa, Zuoming Zhu, Zhiyuan Ye, Joseph M. Ranish, Nyi O. Myo, Errol Antonio C. Sanchez, Schubert S. Chu
  • Patent number: 11815401
    Abstract: A method and apparatus for calibration non-contact temperature sensors within a process chamber are described herein. The calibration of the non-contact temperature sensors includes the utilization of a band edge detector to determine the band edge absorption wavelength of a substrate. The band edge detector is configured to measure the intensity of a range of wavelengths and determines the actual temperature of a substrate based off the band edge absorption wavelength and the material of the substrate. The calibration method is automated and does not require human intervention or disassembly of a process chamber for each calibration.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: November 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Zhepeng Cong, Schubert S. Chu, Nyi O. Myo
  • Patent number: 11807931
    Abstract: Embodiments described herein generally relate to apparatus for fabricating semiconductor devices. A gas injection apparatus is coupled to a first gas source and a second gas source. Gases from the first gas source and second gas source may remain separated until the gases enter a process volume in a process chamber. A coolant is flowed through a channel in the gas injection apparatus to cool the first gas and the second gas in the gas injection apparatus. The coolant functions to prevent thermal decomposition of the gases by mitigating the influence of thermal radiation from the process chamber. In one embodiment, the channel surrounds a first conduit with the first gas and a second conduit with the second gas.
    Type: Grant
    Filed: October 6, 2022
    Date of Patent: November 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Shu-Kwan Lau, Lit Ping Lam, Preetham Rao, Kartik Shah, Ian Ong, Nyi O. Myo, Brian H. Burrows
  • Publication number: 20230027683
    Abstract: Embodiments described herein generally relate to apparatus for fabricating semiconductor devices. A gas injection apparatus is coupled to a first gas source and a second gas source. Gases from the first gas source and second gas source may remain separated until the gases enter a process volume in a process chamber. A coolant is flowed through a channel in the gas injection apparatus to cool the first gas and the second gas in the gas injection apparatus. The coolant functions to prevent thermal decomposition of the gases by mitigating the influence of thermal radiation from the process chamber. In one embodiment, the channel surrounds a first conduit with the first gas and a second conduit with the second gas.
    Type: Application
    Filed: October 6, 2022
    Publication date: January 26, 2023
    Inventors: Shu-Kwan LAU, Lit Ping LAM, Preetham RAO, Kartik SHAH, Ian ONG, Nyi O. MYO, Brian H. BURROWS
  • Patent number: 11492704
    Abstract: Embodiments described herein generally relate to apparatus for fabricating semiconductor devices. A gas injection apparatus is coupled to a first gas source and a second gas source. Gases from the first gas source and second gas source may remain separated until the gases enter a process volume in a process chamber. A coolant is flowed through a channel in the gas injection apparatus to cool the first gas and the second gas in the gas injection apparatus. The coolant functions to prevent thermal decomposition of the gases by mitigating the influence of thermal radiation from the process chamber. In one embodiment, the channel surrounds a first conduit with the first gas and a second conduit with the second gas.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: November 8, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Shu-Kwan Lau, Lit Ping Lam, Preetham Rao, Kartik Shah, Ian Ong, Nyi O. Myo, Brian H. Burrows
  • Publication number: 20220283029
    Abstract: One or more embodiments herein relate to methods for detection using optical emission spectroscopy. In these embodiments, an optical signal is delivered from the process chamber to an optical emission spectrometer (OES). The OES identifies emission peaks of photons, which corresponds to the optical intensity of radiation from the photons, to determine the concentrations of each of the precursor gases and reaction products. The OES sends input signals of the data results to a controller. The controller can adjust process variables within the process chamber in real time during deposition based on the comparison. In other embodiments, the controller can automatically trigger a process chamber clean based on a comparison of input signals of process chamber residues received before the deposition process and input signals of process chamber residues received after the deposition process.
    Type: Application
    Filed: July 8, 2020
    Publication date: September 8, 2022
    Inventors: Zuoming ZHU, Martin A. HILKENE, Avinash SHERVEGAR, Surendra Singh SRIVASTAVA, Ala MORADIAN, Shu-Kwan LAU, Zhiyuan YE, Enle CHOO, Flora Fong-Song CHANG, Bindusugar MARATH SANKARATHODI, Patricia M. LIU, Errol Antonio C. SANCHEZ, Jenny LIN, Nyi O. MYO, Schubert S. CHU
  • Publication number: 20220268634
    Abstract: A method and apparatus for calibration non-contact temperature sensors within a process chamber are described herein. The calibration of the non-contact temperature sensors includes the utilization of a band edge detector to determine the band edge absorption wavelength of a substrate. The band edge detector is configured to measure the intensity of a range of wavelengths and determines the actual temperature of a substrate based off the band edge absorption wavelength and the material of the substrate. The calibration method is automated and does not require human intervention or disassembly of a process chamber for each calibration.
    Type: Application
    Filed: May 13, 2022
    Publication date: August 25, 2022
    Inventors: Zhepeng CONG, Schubert S. CHU, Nyi O. MYO
  • Patent number: 11359972
    Abstract: A method and apparatus for calibration non-contact temperature sensors within a process chamber are described herein. The calibration of the non-contact temperature sensors includes the utilization of a band edge detector to determine the band edge absorption wavelength of a substrate. The band edge detector is configured to measure the intensity of a range of wavelengths and determines the actual temperature of a substrate based off the band edge absorption wavelength and the material of the substrate. The calibration method is automated and does not require human intervention or disassembly of a process chamber for each calibration.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: June 14, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Zhepeng Cong, Schubert S. Chu, Nyi O. Myo
  • Publication number: 20220082445
    Abstract: A method and apparatus for calibration non-contact temperature sensors within a process chamber are described herein. The calibration of the non-contact temperature sensors includes the utilization of a band edge detector to determine the band edge absorption wavelength of a substrate. The band edge detector is configured to measure the intensity of a range of wavelengths and determines the actual temperature of a substrate based off the band edge absorption wavelength and the material of the substrate. The calibration method is automated and does not require human intervention or disassembly of a process chamber for each calibration.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Inventors: Zhepeng CONG, Schubert S. CHU, Nyi O. MYO
  • Patent number: 11177144
    Abstract: Embodiments of the present disclosure provide a thermal process chamber that includes a substrate support, a first plurality of heating elements disposed over or below the substrate support, and a spot heating module disposed over the substrate support. The spot heating module is utilized to provide local heating of regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate alters temperature profile. The shape of the beam spot produced by the spot heating module can be modified without making changes to the optics of the spot heating module.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: November 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shu-Kwan Lau, Zhiyuan Ye, Zuoming Zhu, Koji Nakanishi, Toshiyuki Nakagawa, Nyi O. Myo, Schubert S. Chu
  • Patent number: 11171023
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for semiconductor processing, more particularly, to a thermal process chamber. The thermal process chamber may include a substrate support, a first plurality of heating elements disposed over the substrate support, and one or more high-energy radiant source assemblies disposed over the first plurality of heating elements. The one or more high-energy radiant source assemblies are utilized to provide local heating of cold regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate improves temperature profile, which in turn improves deposition uniformity.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: November 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Schubert S. Chu, Douglas E. Holmgren, Kartik Shah, Palamurali Gajendra, Nyi O. Myo, Preetham Rao, Kevin Joseph Bautista, Zhiyuan Ye, Martin A. Hilkene, Errol Antonio C. Sanchez, Richard O. Collins
  • Publication number: 20210324514
    Abstract: A method and apparatus for a process chamber for thermal processing is described herein. The process chamber is a dual process chamber and shares a chamber body. The chamber body includes a first and a second set of gas inject passages. The chamber body may also include a first and a second set of exhaust ports. The process chamber may have a shared gas panel and/or a shared exhaust conduit. The process chamber described herein enables for the processing of multiple substrates simultaneously with improved process gas flow and heat distribution.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 21, 2021
    Inventors: Zhiyuan YE, Shu-Kwan Danny LAU, Brian H. BURROWS, Lori WASHINGTON, Herman DINIZ, Martin A. HILKENE, Richard O. COLLINS, Nyi O. MYO, Manish HEMKAR, Schubert S. CHU
  • Publication number: 20210285105
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for semiconductor processing, more particularly, to a thermal process chamber. The thermal process chamber includes a substrate support, a first plurality of heating elements disposed over or below the substrate support, and a spot heating module disposed over the substrate support. The spot heating module is utilized to provide local heating of cold regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate improves temperature profile, which in turn improves deposition uniformity.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 16, 2021
    Inventors: Shu-Kwan LAU, Koji NAKANISHI, Toshiyuki NAKAGAWA, Zuoming ZHU, Zhiyuan YE, Joseph M. RANISH, Nyi O. MYO, Errol Antonio C. SANCHEZ, Schubert S. CHU
  • Publication number: 20210175115
    Abstract: In one embodiment, a susceptor for thermal processing is provided. The susceptor includes an outer rim surrounding and coupled to an inner dish, the outer rim having an inner edge and an outer edge. The susceptor further includes one or more structures for reducing a contacting surface area between a substrate and the susceptor when the substrate is supported by the susceptor. At least one of the one or more structures is coupled to the inner dish proximate the inner edge of the outer rim.
    Type: Application
    Filed: February 23, 2021
    Publication date: June 10, 2021
    Inventors: Anhthu NGO, Zuoming ZHU, Balasubramanian RAMACHANDRAN, Paul BRILLHART, Edric TONG, Anzhong CHANG, Kin Pong LO, Kartik SHAH, Schubert S. CHU, Zhepeng CONG, James Francis MACK, Nyi O. MYO, Kevin Joseph BAUTISTA, Xuebin LI, Yi-Chiau HUANG, Zhiyuan YE
  • Patent number: 11021790
    Abstract: Embodiments herein relate to chamber liners with a multi-piece design for use in processing chambers. The multi-piece design can have an inner portion and an outer portion. A portion of the inner surface of the outer portion may be designed to be in contact with the outer surface of the inner portion at a single junction point, creating a thermal barrier between the inner portion and outer portion, thus reducing heat transfer from the inner portion and outer portion. The thermal barrier creates higher temperatures at the chamber liner inner surface and therefore leads to shorter heat up times within the chamber. Additionally, the thermal barrier also creates lower temperatures near the base ring and outer surface of the outer ring, thereby protecting the chamber walls and requiring less thermal regulation/dissipation at the chamber walls.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: June 1, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhepeng Cong, Schubert Chu, Nyi O. Myo, Kartik Shah, Surajit Kumar
  • Patent number: 11021795
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for semiconductor processing, more particularly, to a thermal process chamber. The thermal process chamber includes a substrate support, a first plurality of heating elements disposed over or below the substrate support, and a spot heating module disposed over the substrate support. The spot heating module is utilized to provide local heating of cold regions on a substrate disposed on the substrate support during processing. Localized heating of the substrate improves temperature profile, which in turn improves deposition uniformity.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: June 1, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Shu-Kwan Lau, Koji Nakanishi, Toshiyuki Nakagawa, Zuoming Zhu, Zhiyuan Ye, Joseph M. Ranish, Nyi O. Myo, Errol Antonio C. Sanchez, Schubert S. Chu
  • Patent number: 10930543
    Abstract: In one embodiment, a susceptor for thermal processing is provided. The susceptor includes an outer rim surrounding and coupled to an inner dish, the outer rim having an inner edge and an outer edge. The susceptor further includes one or more structures for reducing a contacting surface area between a substrate and the susceptor when the substrate is supported by the susceptor. At least one of the one or more structures is coupled to the inner dish proximate the inner edge of the outer rim.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: February 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Anhthu Ngo, Zuoming Zhu, Balasubramanian Ramachandran, Paul Brillhart, Edric Tong, Anzhong Chang, Kin Pong Lo, Kartik Shah, Schubert S. Chu, Zhepeng Cong, James Francis Mack, Nyi O. Myo, Kevin Joseph Bautista, Xuebin Li, Yi-Chiau Huang, Zhiyuan Ye
  • Patent number: 10770319
    Abstract: Embodiments described herein provide processing chambers that include an enclosure for a processing volume, a rotatable support within the enclosure, the support having a shaft that extends outside the enclosure, wherein the shaft has a signal feature located outside the processing volume, an energy module within the enclosure, wherein the shaft extends through the energy module, one or more directed energy sources coupled to the enclosure, and one or more signalers positioned proximate to the signal feature, each signaler coupled to at least one of the directed energy sources.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: September 8, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shu-Kwan Danny Lau, Zhiyuan Ye, Zuoming Zhu, Nyi O. Myo, Errol Antonio C. Sanchez, Schubert S. Chu