Patents by Inventor Ognjen Djekic

Ognjen Djekic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10559559
    Abstract: Disclosed are systems, devices, circuits, components, mechanisms, and processes in which a switching mechanism can be coupled between components. The switching mechanism is configured to have an on state or an off state, where the on state allows current to pass along a current path. A monitoring mechanism has one or more sensing inputs coupled to sense an electrical characteristic at the current path. The electrical characteristic can be a current, voltage, and/or power by way of example. The monitoring mechanism is configured to output a reporting signal indicating the sensed electrical characteristic. The monitoring mechanism can be integrated with the switching mechanism on a chip.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: February 11, 2020
    Assignee: Volterra Semiconductor Corporation
    Inventors: David Lidsky, Ognjen Djekic, Ion Elinor Opris, Budong You, Anthony J. Stratakos, Alexandr Ikriannikov, Biljana Beronja, Trey Roessig
  • Patent number: 9774259
    Abstract: A multiple-output DC-DC converter has a first and a second DC-DC sub-converter, each DC-DC subconverter may be a buck, boost, or buck-boost converter having a primary energy-storage inductor. Each DC-DC subconverter drives a separate output of the multiple-output converter and typically has a separate feedback control circuit for controlling output voltage and/or current. The converter has a common timing circuit to maintain a phase offset between the first and DC-DC subconverters. The primary energy storage inductors of the first and second DC-DC converter are magnetically coupled to raise an effective ripple frequency of the converter and simplify output filtering.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: September 26, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Publication number: 20170256532
    Abstract: Disclosed are systems, devices, circuits, components, mechanisms, and processes in which a switching mechanism can be coupled between components. The switching mechanism is configured to have an on state or an off state, where the on state allows current to pass along a current path. A monitoring mechanism has one or more sensing inputs coupled to sense an electrical characteristic at the current path. The electrical characteristic can be a current, voltage, and/or power by way of example. The monitoring mechanism is configured to output a reporting signal indicating the sensed electrical characteristic. The monitoring mechanism can be integrated with the switching mechanism on a chip.
    Type: Application
    Filed: May 17, 2017
    Publication date: September 7, 2017
    Inventors: David Lidsky, Ognjen Djekic, Ion Elinor Opris, Budong You, Anthony J. Stratakos, Alexander Ikriannikov, Biljana Beronja, Trey Roessig
  • Patent number: 9679885
    Abstract: Disclosed are systems, devices, circuits, components, mechanisms, and processes in which a switching mechanism can be coupled between components. The switching mechanism is configured to have an on state or an off state, where the on state allows current to pass along a current path. A monitoring mechanism has one or more sensing inputs coupled to sense an electrical characteristic at the current path. The electrical characteristic can be a current, voltage, and/or power by way of example. The monitoring mechanism is configured to output a reporting signal indicating the sensed electrical characteristic. The monitoring mechanism can be integrated with the switching mechanism on a chip.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: June 13, 2017
    Assignee: Volterra Semiconductor Corporation
    Inventors: David Lidsky, Ognjen Djekic, Ion Opris, Budong You, Anthony J. Stratakos, Alexander Ikriannikov, Biljana Beronja, Trey Roessig
  • Patent number: 9627125
    Abstract: Single phase inductors have non-linear inductance values, and M-phase coupled inductors having non-linear leakage inductance values. Each inductor includes, for example, at least one of the following: a saturable magnetic element, a gap of non-uniform thickness, a core formed of a distributed gap material, or a non-homogeneous core. A DC-to-DC converter includes an inductor having a non-linear inductance value, a switching subsystem, and an output filer. Another DC-to-DC converter includes an output filter, a coupled inductor having non-linear leakage inductance values, and switching subsystems.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: April 18, 2017
    Assignee: Volterra Semiconductor LLC
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Patent number: 9281747
    Abstract: Disclosed are devices, apparatus, circuitry, components, mechanisms, modules, systems, and processes for controlling a voltage regulator in response to information from a load. In some implementations, transient minimizer circuitry is coupled to receive a notification signal indicating a change or an anticipated change in an electrical characteristic of the load. The transient minimizer circuitry is configured to generate a state command signal responsive to the notification signal. The state command signal indicates a state of the voltage regulator. The switching control circuitry is coupled to receive the state command signal from the transient minimizer circuitry. The switching control circuitry is configured to operate switch circuitry to control the state of the voltage regulator in accordance with the state command signal.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: March 8, 2016
    Assignee: Volterra Semiconductor Corporation
    Inventors: Bradley J. Suppanz, Ognjen Djekic
  • Patent number: 9263177
    Abstract: A magnetic device includes a magnetic core and N windings wound at least partially around respective portions of the magnetic core. Each of the N windings has opposing first and second ends. Each first end forms a first connector, and each second end forms a second connector. Each first connector is adapted for coupling to a first substrate in a first plane, and each second connector is adapted for coupling to a second substrate in a second plane, where the second plane is different from the first plane. N is an integer greater than zero. An electrical assembly includes a substrate and a power supply module including a magnetic device. The magnetic device at least partially electrically couples the power supply module to the substrate.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 16, 2016
    Assignee: Volterra Semiconductor LLC
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Publication number: 20150002129
    Abstract: Single phase inductors have non-linear inductance values, and M-phase coupled inductors having non-linear leakage inductance values. Each inductor includes, for example, at least one of the following: a saturable magnetic element, a gap of non-uniform thickness, a core formed of a distributed gap material, or a non-homogeneous core. A DC-to-DC converter includes an inductor having a non-linear inductance value, a switching subsystem, and an output filer. Another DC-to-DC converter includes an output filter, a coupled inductor having non-linear leakage inductance values, and switching subsystems.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Patent number: 8836463
    Abstract: Single phase inductors have non-linear inductance values, and M-phase coupled inductors having non-linear leakage inductance values. Each inductor includes, for example, at least one of the following: a saturable magnetic element, a gap of non-uniform thickness, a core formed of a distributed gap material, or a non-homogeneous core. A DC-to-DC converter includes an inductor having a non-linear inductance value, a switching subsystem, and an output filer. Another DC-to-DC converter includes an output filter, a coupled inductor having non-linear leakage inductance values, and switching subsystems.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: September 16, 2014
    Assignee: Volterra Semiconductor Corporation
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Patent number: 8772967
    Abstract: A multiple-output DC-DC converter has a first and a second DC-DC sub-converter, each DC-DC subconverter may be a buck, boost, or buck-boost converter having a primary energy-storage inductor. Each DC-DC subconverter drives a separate output of the multiple-output converter and typically has a separate feedback control circuit for controlling output voltage and/or current. The converter has a common timing circuit to maintain a phase offset between the first and DC-DC subconverters. The primary energy storage inductors of the first and second DC-DC converter are magnetically coupled to raise an effective ripple frequency of the converter and simplify output filtering.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: July 8, 2014
    Assignee: Volterra Semiconductor Corporation
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Publication number: 20130342181
    Abstract: Disclosed are devices, apparatus, circuitry, components, mechanisms, modules, systems, and processes for controlling a voltage regulator in response to information from a load. In some implementations, transient minimizer circuitry is coupled to receive a notification signal indicating a change or an anticipated change in an electrical characteristic of the load. The transient minimizer circuitry is configured to generate a state command signal responsive to the notification signal. The state command signal indicates a state of the voltage regulator. The switching control circuitry is coupled to receive the state command signal from the transient minimizer circuitry. The switching control circuitry is configured to operate switch circuitry to control the state of the voltage regulator in accordance with the state command signal.
    Type: Application
    Filed: June 26, 2013
    Publication date: December 26, 2013
    Inventors: Bradley J. Suppanz, Ognjen Djekic
  • Patent number: 8487604
    Abstract: An asymmetrical coupled inductor includes a first and a second winding and a core. The core is formed of a magnetic material and magnetically couples together the windings. The core is configured such that a leakage inductance value of the first winding is greater than a leakage inductance value of the second winding. The coupled inductor is included, for example, in a multi-phase DC-to-DC converter. A DC-to-DC converter including a symmetrical coupled inductor includes at least one additional inductor electrically coupled in series with one or more of the coupled inductor's windings. A controller for a DC-to-DC converter including a first phase having an effective inductance value greater than an effective inductance value of a second phase is configured to shut down the second phase while the first phase remains operational during a light load operating condition.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: July 16, 2013
    Assignee: Volterra Semiconductor Corporation
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Patent number: 8330567
    Abstract: An asymmetrical coupled inductor includes a first and a second winding and a core. The core is formed of a magnetic material and magnetically couples together the windings. The core is configured such that a leakage inductance value of the first winding is greater than a leakage inductance value of the second winding. The coupled inductor is included, for example, in a multi-phase DC-to-DC converter. A DC-to-DC converter including a symmetrical coupled inductor includes at least one additional inductor electrically coupled in series with one or more of the coupled inductor's windings. A controller for a DC-to-DC converter including a first phase having an effective inductance value greater than an effective inductance value of a second phase is configured to shut down the second phase while the first phase remains operational during a light load operating condition.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: December 11, 2012
    Assignee: Volterra Semiconductor Corporation
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Publication number: 20120293017
    Abstract: Disclosed are systems, devices, circuits, components, mechanisms, and processes in which a switching mechanism can be coupled between components. The switching mechanism is configured to have an on state or an off state, where the on state allows current to pass along a current path. A monitoring mechanism has one or more sensing inputs coupled to sense an electrical characteristic at the current path. The electrical characteristic can be a current, voltage, and/or power by way of example. The monitoring mechanism is configured to output a reporting signal indicating the sensed electrical characteristic. The monitoring mechanism can be integrated with the switching mechanism on a chip.
    Type: Application
    Filed: April 23, 2012
    Publication date: November 22, 2012
    Applicant: VOLTERRA SEMICONDUCTOR CORPORATION
    Inventors: David Lidsky, Ognjen Djekic, Ion Opris, Budong You, Anthony J. Stratakos, Alexander Ikriannikov, Biljana Beronja, Trey Roessig
  • Patent number: 8068355
    Abstract: A multiphase DC-to-DC power converter has two or more sets of input switches, each set of input switches driving primary windings of at least one associated transformer. Each transformer has one or two secondary windings, the secondary windings feeding power through output switches or rectifiers through an associated output inductor into a common filter. At least two of the output inductors are magnetically coupled.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: November 29, 2011
    Assignee: Volterra Semiconductor Corporation
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Publication number: 20110169476
    Abstract: An asymmetrical coupled inductor includes a first and a second winding and a core. The core is formed of a magnetic material and magnetically couples together the windings. The core is configured such that a leakage inductance value of the first winding is greater than a leakage inductance value of the second winding. The coupled inductor is included, for example, in a multi-phase DC-to-DC converter. A DC-to-DC converter including a symmetrical coupled inductor includes at least one additional inductor electrically coupled in series with one or more of the coupled inductor's windings. A controller for a DC-to-DC converter including a first phase having an effective inductance value greater than an effective inductance value of a second phase is configured to shut down the second phase while the first phase remains operational during a light load operating condition.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 14, 2011
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Publication number: 20090231081
    Abstract: Single phase inductors have non-linear inductance values, and M-phase coupled inductors having non-linear leakage inductance values. Each inductor includes, for example, at least one of the following: a saturable magnetic element, a gap of non-uniform thickness, a core formed of a distributed gap material, or a non-homogeneous core. A DC-to-DC converter includes an inductor having a non-linear inductance value, a switching subsystem, and an output filer. Another DC-to-DC converter includes an output filter, a coupled inductor having non-linear leakage inductance values, and switching subsystems.
    Type: Application
    Filed: March 16, 2009
    Publication date: September 17, 2009
    Inventors: Alexandr Ikriannikov, Ognjen Djekic
  • Patent number: 7463498
    Abstract: A multiphase DC-to-DC power converter has two or more sets of input switches, each set of input switches driving primary windings of an associated transformer. Each transformer has one or two secondary windings, the secondary windings feeding power through output switches or rectifiers through an associated output inductor into a common filter. At least two of the output inductors are magnetically coupled.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: December 9, 2008
    Assignee: Volterra Semiconductor Corporation
    Inventors: Ognjen Djekic, Alexandr Ikriannikov
  • Patent number: 7239530
    Abstract: A multiphase DC-to-DC power converter has two or more sets of input switches, each set of input switches driving primary windings of an associated transformer. Each transformer has one or two secondary windings, the secondary windings feeding power through output switches or rectifiers through an associated output inductor into a common filter. At least two of the output inductors are magnetically coupled.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: July 3, 2007
    Assignee: Volterra Semiconductor Corporation
    Inventors: Ognjen Djekic, Alexandr Ikriannikov
  • Patent number: 6963130
    Abstract: A semiconductor package has a printed circuit board, an integrated circuit chip on the printed circuit board with an exposed semiconductor die, and a rigid structure secured to the printed circuit board and enclosing the exposed semiconductor die. The exposed surface of the semiconductor die placed is in thermal contact with an inner surface of the rigid structure with a compressible material.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: November 8, 2005
    Assignee: Volterra Semiconductor Corporation
    Inventor: Ognjen Djekic