Patents by Inventor Oh-Kee Kwon

Oh-Kee Kwon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10935817
    Abstract: An optical device according to the embodiment of the inventive concept includes a waveguide path including a light generation region, a wavelength variable region, and a light modulation region, a first light waveguide layer provided in the light generation region to generate light, a second light waveguide layer provided in the wavelength variable region and connected to the first light waveguide layer, a ring-shaped third light waveguide layer provided in the light modulation region and connected to the second light waveguide layer, and first and second light modulation electrodes spaced apart from each other with the light modulation region therebetween. Here, the first light modulation electrode, the third light waveguide layer, and the second light modulation electrode vertically overlap each other.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 2, 2021
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee Kwon, Kisoo Kim, Su Hwan Oh, Chul-Wook Lee
  • Patent number: 10931083
    Abstract: An optical apparatus includes a cooling device with a lower clad disposed thereon; a waveguide disposed on the lower clad and including an active waveguide to define a gain section and a passive waveguide to define a wavelength-tunable section; gratings disposed in the lower clad of the wavelength-tunable section; an upper clad disposed on the waveguide; a first upper electrode disposed on the upper clad of the gain section; and a second upper electrode disposed on the upper clad of the wavelength-tunable section. The lower clad of the wavelength-tunable section has a recess region to expose an upper surface of the cooling device, the recess region forming an air gap-having a height of 10 ?m to 80 ?m from the upper surface of the cooling device. The gratings are formed in a depth of at least 5 ?m from a bottom surface of the lower clad of the recess region.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: February 23, 2021
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee Kwon, Su Hwan Oh, Chul-Wook Lee, Kisoo Kim
  • Patent number: 10852617
    Abstract: A light comb generating device according to a disclosed embodiment includes a light source for generating light in a reference wavelength band and outputting the generated light, and an optical comb generator for generating a light comb having a reference comb interval from the output light, wherein the light source changes a wavelength of the output light as much as a reference frequency interval for every reference time interval, the light comb is generated within a wavelength range of the reference frequency interval, and the reference wavelength band may be at least about 3 ?m and no greater than about 30 ?m.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 1, 2020
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee Kwon, Kisoo Kim, Sung Bock Kim, Young Ahn Leem
  • Publication number: 20200103678
    Abstract: An optical device according to the embodiment of the inventive concept includes a waveguide path including a light generation region, a wavelength variable region, and a light modulation region, a first light waveguide layer provided in the light generation region to generate light, a second light waveguide layer provided in the wavelength variable region and connected to the first light waveguide layer, a ring-shaped third light waveguide layer provided in the light modulation region and connected to the second light waveguide layer, and first and second light modulation electrodes spaced apart from each other with the light modulation region therebetween. Here, the first light modulation electrode, the third light waveguide layer, and the second light modulation electrode vertically overlap each other.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 2, 2020
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Kisoo KIM, Su Hwan OH, Chul-Wook LEE
  • Publication number: 20200028324
    Abstract: Provided are an optical apparatus, a manufacturing method of a distributed Bragg reflector laser diode, and a manufacturing method of the optical apparatus, the an optical apparatus including a cooling device, a distributed Bragg reflector laser diode having a lower clad including a recess region on one side of the cooling device and connected to another side of the cooling device, and an air gap between the cooling device and the distributed Bragg reflector laser diode, wherein the air gap is defined by a bottom surface of the lower clad in the recess region and a top surface of the cooling device.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Su Hwan OH, Chul-Wook LEE, Kisoo KIM
  • Patent number: 10476232
    Abstract: Provided are an optical apparatus, a manufacturing method of a distributed Bragg reflector laser diode, and a manufacturing method of the optical apparatus, the an optical apparatus including a cooling device, a distributed Bragg reflector laser diode having a lower clad including a recess region on one side of the cooling device and connected to another side of the cooling device, and an air gap between the cooling device and the distributed Bragg reflector laser diode, wherein the air gap is defined by a bottom surface of the lower clad in the recess region and a top surface of the cooling device.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: November 12, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: OH Kee Kwon, Su Hwan Oh, Chul-Wook Lee, Kisoo Kim
  • Publication number: 20190278151
    Abstract: A light comb generating device according to a disclosed embodiment includes a light source for generating light in a reference wavelength band and outputting the generated light, and an optical comb generator for generating a light comb having a reference comb interval from the output light, wherein the light source changes a wavelength of the output light as much as a reference frequency interval for every reference time interval, the light comb is generated within a wavelength range of the reference frequency interval, and the reference wavelength band may be at least about 3 ?m and no greater than about 30 ?m.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 12, 2019
    Inventors: Oh Kee KWON, Kisoo KIM, Sung Bock KIM, Young Ahn LEEM
  • Patent number: 10148067
    Abstract: Provided is a distributed Bragg reflector tunable laser diode including a substrate provided with a gain section having an active waveguide from which a gain of laser light is obtained and a distributed reflector section having a passive waveguide connected to the active waveguide, wherein the distributed reflector section includes gratings disposed on or under the passive waveguide, a current injection electrode disposed on the passive waveguide and configured to provide a current into the passive waveguide to electrically tune a wavelength of the laser light, and a heater electrode disposed on the current injection electrode and configured to heat the passive waveguide to thermally tune the wavelength of the laser light, wherein the gratings, the current injection electrode, and the heater electrode vertically overlap each other.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: December 4, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee Kwon, Chul-Wook Lee, Su Hwan Oh, Kisoo Kim
  • Publication number: 20180205199
    Abstract: Provided are an optical apparatus, a manufacturing method of a distributed Bragg reflector laser diode, and a manufacturing method of the optical apparatus, the an optical apparatus including a cooling device, a distributed Bragg reflector laser diode having a lower clad including a recess region on one side of the cooling device and connected to another side of the cooling device, and an air gap between the cooling device and the distributed Bragg reflector laser diode, wherein the air gap is defined by a bottom surface of the lower clad in the recess region and a top surface of the cooling device
    Type: Application
    Filed: September 12, 2017
    Publication date: July 19, 2018
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee KWON, Su Hwan OH, Chul-Wook LEE, Kisoo KIM
  • Publication number: 20180205200
    Abstract: Provided is a distributed Bragg reflector tunable laser diode including a substrate provided with a gain section having an active waveguide from which a gain of laser light is obtained and a distributed reflector section having a passive waveguide connected to the active waveguide, wherein the distributed reflector section includes gratings disposed on or under the passive waveguide, a current injection electrode disposed on the passive waveguide and configured to provide a current into the passive waveguide to electrically tune a wavelength of the laser light, and a heater electrode disposed on the current injection electrode and configured to heat the passive waveguide to thermally tune the wavelength of the laser light, wherein the gratings, the current injection electrode, and the heater electrode vertically overlap each other.
    Type: Application
    Filed: September 22, 2017
    Publication date: July 19, 2018
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Chul-Wook LEE, Su Hwan OH, Kisoo KIM
  • Patent number: 9927484
    Abstract: Provided herein is a radio frequency probe apparatus including a RF waveguide including a ground electrode and a signal electrode, a register connected to the signal electrode, a RF connector including an outer conductor connected to the ground electrode, an inner conductor connected to the signal electrode, and a dielectric body filling a portion between the outer conductor and the inner conductor, and a single tip probe connected to the signal electrode of the RF waveguide, or the register.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: March 27, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee Kwon, Young Tak Han, Ki Soo Kim, Su Hwan Oh, Chul Wook Lee, Young Ahn Leem
  • Patent number: 9720177
    Abstract: An optical phase diversity receiver may include: a diffraction grating including grating surfaces; a first input waveguide to which a first optical signal is inputted; a second input waveguide to which a second optical signal is inputted; and a slab waveguide including an input terminal optically coupled with the first and second input waveguides, and an output terminal provided at a position at which optical signals reflected by the diffraction grating reach the slab waveguide. Every determined number of grating surfaces are chirped in an identical manner. The slab waveguide is configured to guide the first and the second optical signals to the diffraction grating and guide the optical signals reflected by the diffraction grating to the output terminal. The grating surfaces are configured such that each of the optical signals reflected by the diffraction grating is divided into the predetermined number by optical power distribution.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 1, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Shin Mo An, Oh Kee Kwon
  • Publication number: 20170052316
    Abstract: There is provided an apparatus for generating a multi-channel array light source based on wavelength division multiplexing (WDM). More specifically, the apparatus has a structure in which an optical multiplexer and distributed feedback laser diode (DFB-LD) array modules are coupled. The optical multiplexer is configured with a plurality of input port columns spatially spaced apart from each other, so that high-speed electrical signal lines, matching resistors, and DFB-LDs are integrated with each input port column. Accordingly, although a conventional apparatus is used as it is, the number of channels can be increased by two or three times without any large modification of the size of an optical device, and thus it is possible to achieve low-price, large-capacity communication. Based on this, it is possible to implement a low-priced 400-Gbps optical transceiver.
    Type: Application
    Filed: May 9, 2016
    Publication date: February 23, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Oh Kee KWON
  • Publication number: 20170023635
    Abstract: Provided herein is a radio frequency probe apparatus including a RF waveguide including a ground electrode and a signal electrode, a register connected to the signal electrode, a RF connector including an outer conductor connected to the ground electrode, an inner conductor connected to the signal electrode, and a dielectric body filling a portion between the outer conductor and the inner conductor, and a single tip probe connected to the signal electrode of the RF waveguide, or the register.
    Type: Application
    Filed: June 27, 2016
    Publication date: January 26, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Young Tak HAN, Ki Soo KIM, Su Hwan OH, Chul Wook LEE, Young Ahn LEEM
  • Publication number: 20160377813
    Abstract: An optical phase diversity receiver may include: a diffraction grating including grating surfaces; a first input waveguide to which a first optical signal is inputted; a second input waveguide to which a second optical signal is inputted; and a slab waveguide including an input terminal optically coupled with the first and second input waveguides, and an output terminal provided at a position at which optical signals reflected by the diffraction grating reach the slab waveguide. Every determined number of grating surfaces are chirped in an identical manner. The slab waveguide is configured to guide the first and the second optical signals to the diffraction grating and guide the optical signals reflected by the diffraction grating to the output terminal. The grating surfaces are configured such that each of the optical signals reflected by the diffraction grating is divided into the predetermined number by optical power distribution.
    Type: Application
    Filed: June 1, 2016
    Publication date: December 29, 2016
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTIT UTE
    Inventors: Shin Mo AN, Oh Kee KWON
  • Patent number: 9348195
    Abstract: A method of operating a wavelength swept source apparatus includes generating a single mode light, and generating a basic optical comb including light rays having identical frequency differences with adjacent light rays by modulating the generated single mode light. The method further includes generating other optical combs that include the same number of light rays as that of light rays of the optical comb that has a frequency band different from that of the basic optical comb, and is distributed in a frequency band wider than that in which the basic optical comb is distributed, by modulating the light rays of the basic optical comb. The light rays of the basic optical comb and the light rays included in the other optical combs are sequentially emitted according to frequencies of the light rays of the basic optical comb and the light rays included in the other optical combs.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: May 24, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee Kwon, Kwang Ryong Oh, minhyup Song, Chul-Wook Lee, Jang Uk Shin, Young-Tak Han
  • Patent number: 9343614
    Abstract: Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: May 17, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Hwan Oh, Ki-Hong Yoon, Kisoo Kim, O-Kyun Kwon, Oh Kee Kwon, Byung-Seok Choi, Jongbae Kim
  • Publication number: 20160077404
    Abstract: A method of operating a wavelength swept source apparatus includes generating a single mode light, and generating a basic optical comb including light rays having identical frequency differences with adjacent light rays by modulating the generated single mode light. The method further includes generating other optical combs that include the same number of light rays as that of light rays of the optical comb that has a frequency band different from that of the basic optical comb, and is distributed in a frequency band wider than that in which the basic optical comb is distributed, by modulating the light rays of the basic optical comb. The light rays of the basic optical comb and the light rays included in the other optical combs are sequentially emitted according to frequencies of the light rays of the basic optical comb and the light rays included in the other optical combs.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Kwang Ryong OH, minhyup SONG, Chul-Wook LEE, Jang Uk SHIN, Young-Tak HAN
  • Patent number: 9276376
    Abstract: A laser module includes a Transmitter Optical Sub-Assembly (TOSA) and a heat radiating means. The TOSA generates light by an electrical signal and transmits the generated light through an optical fiber. The heat radiating means is in contact with the TOSA to discharge heat generated by the TOSA.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: March 1, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Hwan Oh, Oh Kee Kwon
  • Publication number: 20160013621
    Abstract: Provided is a method of manufacturing a distributed feedback laser diode array (DFB-LDA) including: forming active layers corresponding to a plurality of channels using electron beam lithography; forming a plurality of mask patterns between the active layers; and growing the active layers using electron beam lithography, wherein the opening widths of the plurality of mask patterns corresponding to the plurality of channels are different from one another.
    Type: Application
    Filed: January 29, 2015
    Publication date: January 14, 2016
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Young Ahn LEEM, Kisoo KIM, Oh Kee KWON, Young-Tak Han