Patents by Inventor Oh-Kee Kwon

Oh-Kee Kwon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180205200
    Abstract: Provided is a distributed Bragg reflector tunable laser diode including a substrate provided with a gain section having an active waveguide from which a gain of laser light is obtained and a distributed reflector section having a passive waveguide connected to the active waveguide, wherein the distributed reflector section includes gratings disposed on or under the passive waveguide, a current injection electrode disposed on the passive waveguide and configured to provide a current into the passive waveguide to electrically tune a wavelength of the laser light, and a heater electrode disposed on the current injection electrode and configured to heat the passive waveguide to thermally tune the wavelength of the laser light, wherein the gratings, the current injection electrode, and the heater electrode vertically overlap each other.
    Type: Application
    Filed: September 22, 2017
    Publication date: July 19, 2018
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Chul-Wook LEE, Su Hwan OH, Kisoo KIM
  • Patent number: 9927484
    Abstract: Provided herein is a radio frequency probe apparatus including a RF waveguide including a ground electrode and a signal electrode, a register connected to the signal electrode, a RF connector including an outer conductor connected to the ground electrode, an inner conductor connected to the signal electrode, and a dielectric body filling a portion between the outer conductor and the inner conductor, and a single tip probe connected to the signal electrode of the RF waveguide, or the register.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: March 27, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee Kwon, Young Tak Han, Ki Soo Kim, Su Hwan Oh, Chul Wook Lee, Young Ahn Leem
  • Patent number: 9720177
    Abstract: An optical phase diversity receiver may include: a diffraction grating including grating surfaces; a first input waveguide to which a first optical signal is inputted; a second input waveguide to which a second optical signal is inputted; and a slab waveguide including an input terminal optically coupled with the first and second input waveguides, and an output terminal provided at a position at which optical signals reflected by the diffraction grating reach the slab waveguide. Every determined number of grating surfaces are chirped in an identical manner. The slab waveguide is configured to guide the first and the second optical signals to the diffraction grating and guide the optical signals reflected by the diffraction grating to the output terminal. The grating surfaces are configured such that each of the optical signals reflected by the diffraction grating is divided into the predetermined number by optical power distribution.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 1, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Shin Mo An, Oh Kee Kwon
  • Publication number: 20170052316
    Abstract: There is provided an apparatus for generating a multi-channel array light source based on wavelength division multiplexing (WDM). More specifically, the apparatus has a structure in which an optical multiplexer and distributed feedback laser diode (DFB-LD) array modules are coupled. The optical multiplexer is configured with a plurality of input port columns spatially spaced apart from each other, so that high-speed electrical signal lines, matching resistors, and DFB-LDs are integrated with each input port column. Accordingly, although a conventional apparatus is used as it is, the number of channels can be increased by two or three times without any large modification of the size of an optical device, and thus it is possible to achieve low-price, large-capacity communication. Based on this, it is possible to implement a low-priced 400-Gbps optical transceiver.
    Type: Application
    Filed: May 9, 2016
    Publication date: February 23, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Oh Kee KWON
  • Publication number: 20170023635
    Abstract: Provided herein is a radio frequency probe apparatus including a RF waveguide including a ground electrode and a signal electrode, a register connected to the signal electrode, a RF connector including an outer conductor connected to the ground electrode, an inner conductor connected to the signal electrode, and a dielectric body filling a portion between the outer conductor and the inner conductor, and a single tip probe connected to the signal electrode of the RF waveguide, or the register.
    Type: Application
    Filed: June 27, 2016
    Publication date: January 26, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Young Tak HAN, Ki Soo KIM, Su Hwan OH, Chul Wook LEE, Young Ahn LEEM
  • Publication number: 20160377813
    Abstract: An optical phase diversity receiver may include: a diffraction grating including grating surfaces; a first input waveguide to which a first optical signal is inputted; a second input waveguide to which a second optical signal is inputted; and a slab waveguide including an input terminal optically coupled with the first and second input waveguides, and an output terminal provided at a position at which optical signals reflected by the diffraction grating reach the slab waveguide. Every determined number of grating surfaces are chirped in an identical manner. The slab waveguide is configured to guide the first and the second optical signals to the diffraction grating and guide the optical signals reflected by the diffraction grating to the output terminal. The grating surfaces are configured such that each of the optical signals reflected by the diffraction grating is divided into the predetermined number by optical power distribution.
    Type: Application
    Filed: June 1, 2016
    Publication date: December 29, 2016
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTIT UTE
    Inventors: Shin Mo AN, Oh Kee KWON
  • Patent number: 9348195
    Abstract: A method of operating a wavelength swept source apparatus includes generating a single mode light, and generating a basic optical comb including light rays having identical frequency differences with adjacent light rays by modulating the generated single mode light. The method further includes generating other optical combs that include the same number of light rays as that of light rays of the optical comb that has a frequency band different from that of the basic optical comb, and is distributed in a frequency band wider than that in which the basic optical comb is distributed, by modulating the light rays of the basic optical comb. The light rays of the basic optical comb and the light rays included in the other optical combs are sequentially emitted according to frequencies of the light rays of the basic optical comb and the light rays included in the other optical combs.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: May 24, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee Kwon, Kwang Ryong Oh, minhyup Song, Chul-Wook Lee, Jang Uk Shin, Young-Tak Han
  • Patent number: 9343614
    Abstract: Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: May 17, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Hwan Oh, Ki-Hong Yoon, Kisoo Kim, O-Kyun Kwon, Oh Kee Kwon, Byung-Seok Choi, Jongbae Kim
  • Publication number: 20160077404
    Abstract: A method of operating a wavelength swept source apparatus includes generating a single mode light, and generating a basic optical comb including light rays having identical frequency differences with adjacent light rays by modulating the generated single mode light. The method further includes generating other optical combs that include the same number of light rays as that of light rays of the optical comb that has a frequency band different from that of the basic optical comb, and is distributed in a frequency band wider than that in which the basic optical comb is distributed, by modulating the light rays of the basic optical comb. The light rays of the basic optical comb and the light rays included in the other optical combs are sequentially emitted according to frequencies of the light rays of the basic optical comb and the light rays included in the other optical combs.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Kwang Ryong OH, minhyup SONG, Chul-Wook LEE, Jang Uk SHIN, Young-Tak HAN
  • Patent number: 9276376
    Abstract: A laser module includes a Transmitter Optical Sub-Assembly (TOSA) and a heat radiating means. The TOSA generates light by an electrical signal and transmits the generated light through an optical fiber. The heat radiating means is in contact with the TOSA to discharge heat generated by the TOSA.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: March 1, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Hwan Oh, Oh Kee Kwon
  • Publication number: 20160013621
    Abstract: Provided is a method of manufacturing a distributed feedback laser diode array (DFB-LDA) including: forming active layers corresponding to a plurality of channels using electron beam lithography; forming a plurality of mask patterns between the active layers; and growing the active layers using electron beam lithography, wherein the opening widths of the plurality of mask patterns corresponding to the plurality of channels are different from one another.
    Type: Application
    Filed: January 29, 2015
    Publication date: January 14, 2016
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Young Ahn LEEM, Kisoo KIM, Oh Kee KWON, Young-Tak Han
  • Publication number: 20150349491
    Abstract: Provided herein is a distributed bragg reflector ridge laser diode that is capable of easily embodying a diffraction grating and that minimizes an optical absorption effect on a DBR area, and a fabricating method thereof, the distributed bragg reflector ridge laser diode including a lower clad layer formed on top of a substrate; an active core zone formed on top of the lower clad layer; a plurality of ridge wave guides formed on top of the active core zone such that they are spaced from one another and extend in an axial direction; and a diffraction grating formed on top of the active core zone and between the plurality of ridge wave guides.
    Type: Application
    Filed: January 21, 2015
    Publication date: December 3, 2015
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Su Hwan OH, Chul Wook LEE
  • Publication number: 20150155428
    Abstract: Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
    Type: Application
    Filed: February 6, 2015
    Publication date: June 4, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Su Hwan OH, Ki-Hong YOON, Kisoo KIM, O-Kyun KWON, Oh Kee KWON, Byung-Seok CHOI, Jongbae KIM
  • Patent number: 9042740
    Abstract: Disclosed is a transmitter optical module which includes a first package generating an optical signal; a second package bonded with the first package by using chip-to-chip bonding, having a silicon optical circuit platform structure, and amplifying the optical signal; and an optical waveguide forming a transmission path of the optical signal from the first package to the second package.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: May 26, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Young-Tak Han, Jang Uk Shin, Sang Ho Park, Oh Kee Kwon, Dong-Hun Lee, Yongsoon Baek
  • Patent number: 9036969
    Abstract: Provided are a spot size converter and a method of manufacturing the spot size converter. The method includes stacking a lower clad layer, a core layer, and a first upper clad layer on a substrate, tapering the first upper clad layer and the core layer in a first direction on a side of the substrate, forming a waveguide layer on the first upper clad layer and the lower clad layer, and etching the waveguide layer, the first upper clad layer, the core layer, and the lower clad layer such that the waveguide layer is wider than a tapered portion of the core layer on the side of the substrate and has the same width as that of the core layer on another side of the substrate.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 19, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee Kwon, Chul-Wook Lee, Dong-Hun Lee, Young Ahn Leem, Young-Tak Han, Yongsoon Baek, Yun C. Chung
  • Publication number: 20150131687
    Abstract: A laser module includes a Transmitter Optical Sub-Assembly (TOSA) and a heat radiating means. The TOSA generates light by an electrical signal and transmits the generated light through an optical fiber. The heat radiating means is in contact with the TOSA to discharge heat generated by the TOSA.
    Type: Application
    Filed: July 21, 2014
    Publication date: May 14, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Su Hwan OH, Oh Kee KWON
  • Publication number: 20150110144
    Abstract: A distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 23, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee KWON, Su Hwan OH, Young Ahn LEEM, O-Kyun KWON, Young-Tak HAN, Yongsoon BAEK, Yun C. CHUNG
  • Patent number: 9007672
    Abstract: Disclosed is a transmitter optical module which includes an electro-absorption modulated laser modulating a light into an optical signal through a high-frequency electrical signal; a first sub-mount transferring the high-frequency signal to the electro-absorption modulated laser; and a second sub-mount receiving the high-frequency signal from the electro-absorption modulated laser to terminate the electro-absorption modulated laser. A length of a first wire connecting the first sub-mount and the electro-absorption modulated laser is different from a length of a second wire connecting the second sub-mount and the electro-absorption modulated laser.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: April 14, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Tak Han, Oh Kee Kwon, Jang Uk Shin, Sang Ho Park, Yongsoon Baek
  • Patent number: 8989229
    Abstract: Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: March 24, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Su Hwan Oh, Ki-Hong Yoon, Kisoo Kim, O-Kyun Kwon, Oh Kee Kwon, Byung-seok Choi, Jongbae Kim
  • Patent number: 8937980
    Abstract: Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 20, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee Kwon, Su Hwan Oh, Young Ahn Leem, O-Kyun Kwon, Young-Tak Han, Yongsoon Baek, Yun C. Chung