Patents by Inventor OhHan Kim

OhHan Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10388637
    Abstract: A semiconductor device has a first substrate. A first semiconductor component and second semiconductor component are disposed on the first substrate. In some embodiments, a recess is formed in the first substrate, and the first semiconductor component is disposed on the recess of the first substrate. A second substrate has an opening formed through the second substrate. A third semiconductor component is disposed on the second substrate. The second substrate is disposed over the first substrate and second semiconductor component. The first semiconductor component extends through the opening. An encapsulant is deposited over the first substrate and second substrate.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: August 20, 2019
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: OhHan Kim, DeokKyung Yang, HunTeak Lee, InSang Yoon, Il Kwon Shim
  • Patent number: 10163744
    Abstract: A semiconductor device has a substrate including a recess and a peripheral portion with through conductive vias. A first semiconductor die is mounted over the substrate and within the recess. A planar heat spreader is mounted over the substrate and over the first semiconductor die. The planar heat spreader has openings around a center portion of the planar heat spreader and aligned over the peripheral portion of the substrate. A second semiconductor die is mounted over the center portion of the planar heat spreader. A third semiconductor die is mounted over the second semiconductor die. First and second pluralities of bond wires extend from the second and third semiconductor die, respectively, through the openings in the planar heat spreader to electrically connect to the through conductive vias. An encapsulant is deposited over the substrate and around the planar heat spreader.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: December 25, 2018
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: OhHan Kim, WonJun Ko, DaeSik Choi
  • Publication number: 20180269195
    Abstract: A semiconductor device has a semiconductor die or component, including an IPD, disposed over an attach area of a penetrable film layer with a portion of the semiconductor die or component embedded in the penetrable film layer. A conductive layer is formed over a portion of the film layer within the attach area and over a portion of the film layer outside the attach area. An encapsulant is deposited over the film layer, conductive layer, and semiconductor die or component. The conductive layer extends outside the encapsulant. An insulating material can be disposed under the semiconductor die or component. A shielding layer is formed over the encapsulant. The shielding layer is electrically connected to the conductive layer. The penetrable film layer is removed. The semiconductor die or component disposed over the film layer and covered by the encapsulant and shielding layer form an SIP module without a substrate.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Applicant: STATS ChipPAC Pte. Ltd.
    Inventors: OhHan Kim, KyungHwan Kim, WoonJae Beak, HunTeak Lee, InSang Yoon
  • Publication number: 20180261569
    Abstract: A semiconductor device has a first substrate and a second substrate. An opening is formed through the second substrate. A first semiconductor component and second semiconductor component are disposed between the first substrate and second substrate. The second substrate is electrically coupled to the first substrate through the first semiconductor component. A first terminal of the first semiconductor component is electrically coupled to the first substrate. A second terminal of the first semiconductor component is electrically coupled to the second substrate. The second semiconductor component extends into the opening. An encapsulant is deposited over the first substrate and second substrate.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Applicant: STATS ChipPAC Pte. Ltd.
    Inventors: DeokKyung Yang, OhHan Kim, HeeSoo Lee, HunTeak Lee, InSang Yoon, Il Kwon Shim
  • Publication number: 20180158779
    Abstract: A semiconductor device has a substrate with a first opening and second opening formed in the substrate. A first semiconductor component is disposed on the substrate. The substrate is disposed on a carrier. A second semiconductor component is disposed on the carrier in the first opening of the substrate. A third semiconductor component is disposed in the second opening. The third semiconductor component is a semiconductor package in some embodiments. A first shielding layer may be formed over the semiconductor package. An encapsulant is deposited over the substrate, first semiconductor component, and second semiconductor component. A shielding layer may be formed over the encapsulant.
    Type: Application
    Filed: November 9, 2017
    Publication date: June 7, 2018
    Applicant: STATS ChipPAC Pte. Ltd.
    Inventors: DeokKyung Yang, Woonjae Beak, YiSu Park, OhHan Kim, HunTeak Lee, HeeSoo Lee
  • Publication number: 20180158768
    Abstract: A semiconductor device has a first substrate. A first semiconductor component and second semiconductor component are disposed on the first substrate. In some embodiments, a recess is formed in the first substrate, and the first semiconductor component is disposed on the recess of the first substrate. A second substrate has an opening formed through the second substrate. A third semiconductor component is disposed on the second substrate. The second substrate is disposed over the first substrate and second semiconductor component. The first semiconductor component extends through the opening. An encapsulant is deposited over the first substrate and second substrate.
    Type: Application
    Filed: December 4, 2017
    Publication date: June 7, 2018
    Applicant: STATS ChipPAC Pte. Ltd.
    Inventors: OhHan Kim, DeokKyung Yang, HunTeak Lee, InSang Yoon, Il Kwon Shim
  • Publication number: 20180061806
    Abstract: A semiconductor device has a carrier with an adhesive layer formed over the carrier. Alignment marks are provided for picking and placing the electrical component on the carrier or adhesive layer. An electrical component is disposed on the adhesive layer by pressing terminals of the electrical component into the adhesive layer. The electrical component can be a semiconductor die, discrete component, electronic module, and semiconductor package. A leadframe is disposed over the adhesive layer. A shielding layer is formed over the electrical component. An encapsulant is deposited over the electrical component. The carrier and adhesive layer are removed so that the terminals of the electrical component extend out from the encapsulant for electrical interconnect. A substrate includes a plurality of conductive traces. The semiconductor device is disposed on the substrate with the terminals of the electrical component in contact with the conductive traces.
    Type: Application
    Filed: August 25, 2017
    Publication date: March 1, 2018
    Applicant: STATS ChipPAC Pte. Ltd.
    Inventors: JinHee Jung, OhHan Kim, InSang Yoon
  • Patent number: 9543258
    Abstract: A semiconductor device includes a multi-layer substrate. A ground shield is disposed between layers of the substrate and electrically connected to a ground point. A plurality of semiconductor die is mounted to the substrate over the ground shield. The ground shield extends beyond a footprint of the plurality of semiconductor die. An encapsulant is formed over the plurality of semiconductor die and substrate. Dicing channels are formed in the encapsulant, between the plurality of semiconductor die, and over the ground shield. A plurality of metal-filled holes is formed along the dicing channels, and extends into the substrate and through the ground shield. A top shield is formed over the plurality of semiconductor die and electrically and mechanically connects to the ground shield through the metal-filled holes. The top and ground shields are configured to block electromagnetic interference generated with respect to an integrated passive device disposed in the semiconductor die.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: January 10, 2017
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: OhHan Kim, SunMi Kim, KyungHoon Lee
  • Patent number: 9478486
    Abstract: A semiconductor device has a core semiconductor device with a through silicon via (TSV). The core semiconductor device includes a plurality of stacked semiconductor die and semiconductor component. An insulating layer is formed around the core semiconductor device. A conductive via is formed through the insulating layer. A first interconnect structure is formed over a first side of the core semiconductor device. The first interconnect structure is electrically connected to the TSV. A second interconnect structure is formed over a second side of the core semiconductor device. The second interconnect structure is electrically connected to the TSV. The first and second interconnect structures include a plurality of conductive layers separated by insulating layers. A semiconductor die is mounted to the first interconnect structure. The semiconductor die is electrically connected to the core semiconductor device through the first and second interconnect structures and TSV.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: October 25, 2016
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Sun Mi Kim, OhHan Kim, KyungHoon Lee
  • Patent number: 9373578
    Abstract: A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: June 21, 2016
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: DaeSik Choi, OhHan Kim, SungWon Cho
  • Publication number: 20160148882
    Abstract: A semiconductor device includes a multi-layer substrate. A ground shield is disposed between layers of the substrate and electrically connected to a ground point. A plurality of semiconductor die is mounted to the substrate over the ground shield. The ground shield extends beyond a footprint of the plurality of semiconductor die. An encapsulant is formed over the plurality of semiconductor die and substrate. Dicing channels are formed in the encapsulant, between the plurality of semiconductor die, and over the ground shield. A plurality of metal-filled holes is formed along the dicing channels, and extends into the substrate and through the ground shield. A top shield is formed over the plurality of semiconductor die and electrically and mechanically connects to the ground shield through the metal-filled holes. The top and ground shields are configured to block electromagnetic interference generated with respect to an integrated passive device disposed in the semiconductor die.
    Type: Application
    Filed: January 29, 2016
    Publication date: May 26, 2016
    Applicant: STATS ChipPAC, Ltd.
    Inventors: OhHan Kim, SunMi Kim, KyungHoon Lee
  • Patent number: 9293349
    Abstract: A semiconductor device includes a multi-layer substrate. A ground shield is disposed between layers of the substrate and electrically connected to a ground point. A plurality of semiconductor die is mounted to the substrate over the ground shield. The ground shield extends beyond a footprint of the plurality of semiconductor die. An encapsulant is formed over the plurality of semiconductor die and substrate. Dicing channels are formed in the encapsulant, between the plurality of semiconductor die, and over the ground shield. A plurality of metal-filled holes is formed along the dicing channels, and extends into the substrate and through the ground shield. A top shield is formed over the plurality of semiconductor die and electrically and mechanically connects to the ground shield through the metal-filled holes. The top and ground shields are configured to block electromagnetic interference generated with respect to an integrated passive device disposed in the semiconductor die.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: March 22, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: OhHan Kim, SunMi Kim, KyungHoon Lee
  • Patent number: 9279673
    Abstract: A warpage test system uses a calibration block to calibrate the warpage test system over a temperature profile. The calibration block includes a first metal block bonded to a second metal block. The first metal block includes a first metal and a second different metal. The first metal block includes a CTE different than a CTE of the second metal block. The calibration block is disposed in the warpage test system. A warpage of the calibration block is measured over a temperature profile ranging from 28° C. to 260° C. A deviation between the measured warpage of the calibration block and a known thermal expansion of the calibration block over the temperature profile is recorded. The warpage measurement in a semiconductor package is compensated by the deviation between the measured warpage of the calibration block and the known thermal expansion or warpage of the calibration block over the temperature profile.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: March 8, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: WonJun Ko, SeungYong Chai, OhHan Kim, GwangTae Kim, Kenny Lee
  • Patent number: 9123663
    Abstract: A shielded semiconductor device is made by mounting semiconductor die to a first substrate. An encapsulant is formed over the semiconductor die and first substrate. A dicing channel is formed through the encapsulant between the semiconductor die. A hole is drilled in the first substrate along the dicing channel on each side of the semiconductor die. A shielding layer is formed over the encapsulant and semiconductor die. The hole is lined with the shielding layer. The first substrate is singulated to separate the semiconductor die. The first substrate is mounted to a second substrate. A metal pillar is formed in the opening to electrically connect the shielding layer to a ground plane in the second substrate. The metal pillar includes a hook for a mechanically secure connection to the shielding layer. An interconnect structure is formed on the first substrate to electrically connect the semiconductor die to the second substrate.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: September 1, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: OhHan Kim, SeungWon Kim, JoungUn Park
  • Patent number: 8900921
    Abstract: A semiconductor device has a core semiconductor device with a through silicon via (TSV). The core semiconductor device includes a plurality of stacked semiconductor die and semiconductor component. An insulating layer is formed around the core semiconductor device. A conductive via is formed through the insulating layer. A first interconnect structure is formed over a first side of the core semiconductor device. The first interconnect structure is electrically connected to the TSV. A second interconnect structure is formed over a second side of the core semiconductor device. The second interconnect structure is electrically connected to the TSV. The first and second interconnect structures include a plurality of conductive layers separated by insulating layers. A semiconductor die is mounted to the first interconnect structure. The semiconductor die is electrically connected to the core semiconductor device through the first and second interconnect structures and TSV.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 2, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Sun Mi Kim, OhHan Kim, KyungHoon Lee
  • Patent number: 8884339
    Abstract: A semiconductor device that has a flipchip semiconductor die and substrate. A first insulating layer is formed over the substrate. A via is formed through the first insulating layer. Conductive material is deposited in the via to form a conductive pillar or stacked stud bumps. The conductive pillar is electrically connected to a conductive layer within the substrate. A second insulating layer is formed over the first insulating layer. Bump material is formed over the conductive pillar. The bump material is reflowed to form a bump. The first and second insulating layers are removed. The semiconductor die is mounted to the substrate by reflowing the bump to a conductive layer of the die. The semiconductor die also has a third insulating layer formed over the conductive layer and an active surface of the die and UBM formed over the first conductive layer and third insulating layer.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: November 11, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: KiYoun Jang, DaeSik Choi, OhHan Kim, DongSoo Moon
  • Publication number: 20140269810
    Abstract: A warpage test system uses a calibration block to calibrate the warpage test system over a temperature profile. The calibration block includes a first metal block bonded to a second metal block. The first metal block includes a first metal and a second different metal. The first metal block includes a CTE different than a CTE of the second metal block. The calibration block is disposed in the warpage test system. A warpage of the calibration block is measured over a temperature profile ranging from 28° C. to 260° C. A deviation between the measured warpage of the calibration block and a known thermal expansion of the calibration block over the temperature profile is recorded. The warpage measurement in a semiconductor package is compensated by the deviation between the measured warpage of the calibration block and the known thermal expansion or warpage of the calibration block over the temperature profile.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 18, 2014
    Applicant: STATS CHIPPAC, LTD.
    Inventors: WonJun Ko, SeungYong Chai, OhHan Kim, GwangTae Kim, Kenny Lee
  • Publication number: 20140239509
    Abstract: A semiconductor device has a core semiconductor device with a through silicon via (TSV). The core semiconductor device includes a plurality of stacked semiconductor die and semiconductor component. An insulating layer is formed around the core semiconductor device. A conductive via is formed through the insulating layer. A first interconnect structure is formed over a first side of the core semiconductor device. The first interconnect structure is electrically connected to the TSV. A second interconnect structure is formed over a second side of the core semiconductor device. The second interconnect structure is electrically connected to the TSV. The first and second interconnect structures include a plurality of conductive layers separated by insulating layers. A semiconductor die is mounted to the first interconnect structure. The semiconductor die is electrically connected to the core semiconductor device through the first and second interconnect structures and TSV.
    Type: Application
    Filed: May 1, 2014
    Publication date: August 28, 2014
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Sun Mi Kim, OhHan Kim, KyungHoon Lee
  • Patent number: 8786076
    Abstract: A semiconductor device includes a substrate with conductive traces. A semiconductor die is mounted with an active surface oriented toward the substrate. An underfill material is deposited between the semiconductor die and substrate. A recess is formed in an interior portion of the semiconductor die that extends from a back surface of the semiconductor die opposite the active surface partially through the semiconductor die such that a peripheral portion of the back surface of the semiconductor die is offset with respect to a depth of the recess. A thermal interface material (TIM) is deposited over the semiconductor die and into the recess such that the TIM in the recess is laterally supported by the peripheral portion of the semiconductor die to reduce flow of the TIM away from the semiconductor die. A heat spreader including protrusions is mounted over the semiconductor die and contacts the TIM.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: July 22, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: OhHan Kim, YongHee Kang, KyungHoon Lee
  • Publication number: 20140175642
    Abstract: A semiconductor device has a substrate and first conductive pads formed over the substrate. An interconnect surface area of the first conductive pads is expanded by forming a plurality of recesses into the first conductive pads. The recesses can be an arrangement of concentric rings, arrangement of circular recesses, or arrangement of parallel linear trenches. Alternatively, the interconnect surface area of the first conductive pads is expanded by forming a second conductive pad over the first conductive pad. A semiconductor die has a plurality of interconnect structures formed over a surface of the semiconductor die. The semiconductor die is mounted to the substrate with the interconnect structures contacting the expanded interconnect surface area of the first conductive pads to increase bonding strength of the interconnect structure to the first conductive pads. A mold underfill material is deposited between the semiconductor die and substrate.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Applicant: STATS ChipPAC, Ltd.
    Inventors: DaeSik Choi, OhHan Kim, SungWon Cho