Patents by Inventor Olgica Bakajin

Olgica Bakajin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180243693
    Abstract: Embodiments described herein relate to methods and systems for dewatering solutions via forward osmosis.
    Type: Application
    Filed: August 31, 2016
    Publication date: August 30, 2018
    Applicant: Porifera, Inc.
    Inventors: Charles BENTON, Erik DESORMEAUX, Olgica BAKAJIN
  • Publication number: 20170333847
    Abstract: Membranes are described that may include aligned carbon nanotubes coated with an inorganic support layer and a polymeric matrix. Methods of membrane fabrication are described that may include coating an aligned carbon nanotube array with an inorganic support layer followed by infiltration with a polymeric solvent or solution. The support carbon nanotube membrane may have improved performance for separations such as desalination, drug delivery, or pharmaceuticals.
    Type: Application
    Filed: October 30, 2015
    Publication date: November 23, 2017
    Applicant: Porifera, Inc.
    Inventors: Valentin Lulevich, Olgica Bakajin
  • Publication number: 20170197181
    Abstract: An example separation system includes a stack of membrane plate assemblies. An example membrane plate assembly may include membranes bonded to opposite sides of a spacer plate. The spacer plate may include a first opening in fluid communication with a region between the membranes, and a second opening in fluid communication with a region between membrane plate assemblies. Adjacent membrane plate assemblies in the stack may have alternating orientations such that bonding areas for adjacent membranes in the stack may be staggered. Accordingly, two isolated flows may be provided which may be orthogonal from one another.
    Type: Application
    Filed: March 27, 2017
    Publication date: July 13, 2017
    Applicant: Porifera, Inc.
    Inventors: Charles Benton, Olgica Bakajin
  • Patent number: 9636635
    Abstract: An example separation system includes a stack of membrane plate assemblies. An example membrane plate assembly may include membranes bonded to opposite sides of a spacer plate. The spacer plate may include a first opening in fluid communication with a region between the membranes, and a second opening in fluid communication with a region between membrane plate assemblies. Adjacent membrane plate assemblies in the stack may have alternating orientations such that bonding areas for adjacent membranes in the stack may be staggered. Accordingly, two isolated flows may be provided which may be orthogonal from one another.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 2, 2017
    Assignee: Porifera, Inc.
    Inventors: Charles Benton, Olgica Bakajin
  • Publication number: 20160002074
    Abstract: An example water purification system for purifying high concentration feed solutions includes a high rejection forward osmosis module, one or more low rejection modules, and a high rejection reverse osmosis module. The low rejection modules may have different rejection levels. The system may be pressurized by one or more pumps. One or more of the low rejection modules may include one or more nanofiltration (NF) membranes. The draw solution may comprise a monovalent salt, a multivalent salt, or a combination of both.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 7, 2016
    Applicant: Porifera, Inc.
    Inventors: Charles Benton, Olgica Bakajin, Carl Lundin
  • Patent number: 9227360
    Abstract: Fabrication methods for selective membranes that include aligned nanotubes can advantageously include a mechanical polishing step. The nanotubes have their ends closed off during the step of infiltrating a polymer precursor around the nanotubes. This prevents polymer precursor from flowing into the nanotubes. The polishing step is performed after the polymer matrix is formed, and can open up the ends of the nanotubes.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: January 5, 2016
    Assignee: Porifera, Inc.
    Inventors: Valentin Lulevich, Olgica Bakajin, Jennifer E. Klare, Aleksandr Noy
  • Patent number: 9216391
    Abstract: Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 22, 2015
    Assignee: Porifera, Inc.
    Inventors: Ravindra Revanur, Valentin Lulevich, Il Juhn Roh, Jennifer E. Klare, Sangil Kim, Aleksandr Noy, Olgica Bakajin
  • Publication number: 20150273399
    Abstract: Examples are described including membrane fabrication systems using roll-to-roll processing to fabricate a forward osmosis membrane. Fabric supported by a solid sheet may be cast with a polymer and a selectivity layer may be applied to form the forward osmosis membrane. The forward osmosis membrane supported by the solid sheet may be delaminated using an alcohol.
    Type: Application
    Filed: November 1, 2013
    Publication date: October 1, 2015
    Inventors: Il-Juhn Roh, Ravindra Ravanur, Aleksandr Noy, Olgica Bakajin
  • Patent number: 8940173
    Abstract: Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: January 27, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Olgica Bakajin, Aleksandr Noy, Francesco Fornasiero, Hyung Gyu Park, Jason K. Holt, Sangil Kim
  • Patent number: 8920654
    Abstract: Forward osmosis membranes having a hydrophilic support layer and a polyamide rejection layer in a thin film composite membrane are considered. Preferred support layer materials include aramid polymers and PVDF. A woven or non-woven mesh can be incorporated into the support layer to improve handling properties of the membrane. Flat sheet and hollow fiber configurations are possible. Antifouling techniques are provided. The polyamide layer can be formed on the hydrophilic support layer by interfacial polymerization. Applications include forward osmosis and pressure retarded osmosis applications, such as industrial product and/or waste concentration, hydration bags, energy/pressure generation, and controlled delivery of chemicals (e.g., for pharmaceutical applications).
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 30, 2014
    Assignee: Porifera, Inc.
    Inventors: Ravindra Revanur, Iljuhn Roh, Jennifer E. Klare, Aleksandr Noy, Olgica Bakajin
  • Publication number: 20140175011
    Abstract: An example separation system includes a stack of membrane plate assemblies. An example membrane plate assembly may include membranes bonded to opposite sides of a spacer plate. The spacer plate may include a first opening in fluid communication with a region between the membranes, and a second opening in fluid communication with a region between membrane plate assemblies. Adjacent membrane plate assemblies in the stack may have alternating orientations such that bonding areas for adjacent membranes in the stack may be staggered. Accordingly, two isolated flows may be provided which may be orthogonal from one another.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Applicant: PORIFERA, INC.
    Inventors: Charles Benton, Olgica Bakajin
  • Publication number: 20120241371
    Abstract: Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 27, 2012
    Inventors: Ravindra Revanur, Valentin Lulevich, Il Juhn Roh, Jennifer E. Klare, Sangil Kim, Aleksandr Noy, Olgica Bakajin
  • Publication number: 20120080378
    Abstract: Forward osmosis membranes having a hydrophilic support layer and a polyamide rejection layer in a thin film composite membrane are considered. Preferred support layer materials include aramid polymers and PVDF. A woven or non-woven mesh can be incorporated into the support layer to improve handling properties of the membrane. Flat sheet and hollow fiber configurations are possible. Antifouling techniques are provided. The polyamide layer can be formed on the hydrophilic support layer by interfacial polymerization. Applications include forward osmosis and pressure retarded osmosis applications, such as industrial product and/or waste concentration, hydration bags, energy/pressure generation, and controlled delivery of chemicals (e.g., for pharmaceutical applications).
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Inventors: Ravindra Revanur, IIjuhn Roh, Jennifer E. Klare, Aleksandr Noy, Olgica Bakajin
  • Publication number: 20110253630
    Abstract: Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
    Type: Application
    Filed: November 29, 2010
    Publication date: October 20, 2011
    Inventors: Olgica Bakajin, Aleksandr Noy, Francesco Fornasiero, Hyung Gyu Park, Sangil Kim
  • Patent number: 8038887
    Abstract: Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: October 18, 2011
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Olgica Bakajin, Jason Holt, Aleksandr Noy, Hyung Gyu Park
  • Publication number: 20110220574
    Abstract: Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
    Type: Application
    Filed: May 29, 2009
    Publication date: September 15, 2011
    Inventors: Olgica Bakajin, Aleksandr Noy, Francesco Fornasiero, Hyung Gyu Park, Jason K. Holt, Sangil Kim
  • Patent number: 7745856
    Abstract: A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: June 29, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Aleksandr Noy, Olgica Bakajin, Sonia Létant, Michael Stadermann, Alexander B. Artyukhin
  • Publication number: 20100065822
    Abstract: A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.
    Type: Application
    Filed: February 10, 2009
    Publication date: March 18, 2010
    Inventors: Aleksandr Noy, Olgica Bakajin, Sonia Letant, Michael Stadermann, Alexander B. Artyukhin
  • Patent number: 7569850
    Abstract: A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: August 4, 2009
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Aleksandr Noy, Alexander B. Artyukhin, Olgica Bakajin, Pieter Stoeve
  • Patent number: 7544978
    Abstract: A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: June 9, 2009
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Aleksandr Noy, Olgica Bakajin, Sonia Létant, Michael Stadermann, Alexander B. Artyukhin