Patents by Inventor Olgica Bakajin

Olgica Bakajin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080223795
    Abstract: Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
    Type: Application
    Filed: August 23, 2006
    Publication date: September 18, 2008
    Inventors: Olgica Bakajin, Jason Holt, Aleksandr Noy, Hyung Gyu Park
  • Patent number: 7290667
    Abstract: A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: November 6, 2007
    Assignee: The Regents of the University of California
    Inventors: Olgica Bakajin, Aleksandr Noy
  • Publication number: 20060204428
    Abstract: A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.
    Type: Application
    Filed: January 23, 2006
    Publication date: September 14, 2006
    Inventors: Aleksandr Noy, Olgica Bakajin, Sonia Letant, Michael Stadermann, Alexander Artyukhin
  • Publication number: 20060169975
    Abstract: A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents.
    Type: Application
    Filed: January 23, 2006
    Publication date: August 3, 2006
    Inventors: Aleksandr Noy, Alexander Artyukhin, Olgica Bakajin, Pieter Stroeve
  • Patent number: 7076092
    Abstract: A method and apparatus with the sensitivity to detect and identify single target molecules through the localization of dual, fluorescently labeled probe molecules. This can be accomplished through specific attachment of the taget to a surface or in a two-dimensional (2D) flowing fluid sheet having approximate dimensions of 0.5 ?m×100 ?m×100 ?m. A device using these methods would have 103–104 greater throughput than previous one-dimensional (1D) micro-stream devices having 1 ?m3 interrogation volumes and would for the first time allow immuno- and DNA assays at ultra-low (femtomolar) concentrations to be performed in short time periods (˜10 minutes). The use of novel labels (such as metal or semiconductor nanoparticles) may be incorporated to further extend the sensitivity possibly into the attomolar range.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: July 11, 2006
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Christopher W. Hollars, Thomas R. Huser, Stephen M. Lane, Rodney L. Balhorn, Olgica Bakajin, Christopher Darrow, Joe H. Satcher, Jr.
  • Publication number: 20060062440
    Abstract: A method and apparatus with the sensitivity to detect and identify single target molecules through the localization of dual, fluorescently labeled probe molecules. This can be accomplished through specific attachment of the taget to a surface or in a two-dimensional (2D) flowing fluid sheet having approximate dimensions of 0.5 ?m×100 ?m×100 ?m. A device using these methods would have 103-104 greater throughput than previous one-dimensional (1D) micro-stream devices having 1 ?m3 interrogation volumes and would for the first time allow immuno- and DNA assays at ultra-low (femtomolar) concentrations to be performed in short time periods (˜10 minutes). The use of novel labels (such as metal or semiconductor nanoparticles) may be incorporated to further extend the sensitivity possibly into the attomolar range.
    Type: Application
    Filed: June 12, 2002
    Publication date: March 23, 2006
    Inventors: Christopher Hollars, Thomas Huser, Stephen Lane, Rodney Balhorn, Olgica Bakajin, Christopher Darrow, Joe Satcher
  • Patent number: 6844543
    Abstract: This invention provides a system and method for measuring an energy differential that correlates to quantitative measurement of an amount mass of an applied localized material. Such a system and method remains compatible with other methods of analysis, such as, for example, quantitating the elemental or isotopic content, identifying the material, or using the material in biochemical analysis.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: January 18, 2005
    Assignee: The Regents of the University of California
    Inventors: Patrick G. Grant, Olgica Bakajin, John S. Vogel, Graham Bench
  • Patent number: 6824664
    Abstract: The present invention further provides a device for the integrated micromanipulation, amplification, and analysis of polarized particles such as DNA comprises a microchip which contains constrictions of insulating material for dielectrophoresis powered by an alternating current or direct current signal generator, and attached to a hot source that can be heated to specific temperatures. Nucleic acids can be heated and cooled to allow for denaturation, and the annealing of complementary primers and enzymatic reactions, as in a thermocycling reaction. After such a reaction has been completed at the constriction, the dielectrophoretic field can be switched to a direct field to release the product and direct it through a matrix for fractionation. The device includes data analysis equipment for the control of these operations, and imaging equipment for the analysis of the products.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: November 30, 2004
    Assignee: Princeton University
    Inventors: Robert H. Austin, Jonas O. Tegenfeldt, Edward C. Cox, Chia Fu Chou, Olgica Bakajin
  • Publication number: 20040007528
    Abstract: A carbon nanotube mesh for separating, concentrating, and/or filtering molecules, and a method for fabricating the same. The carbon nanotube mesh includes a plurality of intertwined free-standing carbon nanotubes which are fixedly attached to a substrate. In one embodiment, the microdevice is fabricated by growing the intertwined free-standing carbon nanotubes to extend by free growth from the surface of the substrate into free space.
    Type: Application
    Filed: July 3, 2003
    Publication date: January 15, 2004
    Applicant: The Regents of the University of California
    Inventors: Olgica Bakajin, Aleksandr Noy
  • Publication number: 20040004183
    Abstract: This invention provides a system and method for measuring an energy differential that correlates to quantitative measurement of an amount mass of an applied localized material. Such a system and method remains compatible with other methods of analysis, such as, for example, quantitating the elemental or isotopic content, identifying the material, or using the material in biochemical analysis.
    Type: Application
    Filed: May 9, 2003
    Publication date: January 8, 2004
    Applicant: The Regents of the University of California
    Inventors: Patrick G. Grant, Olgica Bakajin, John S. Vogel, Graham Bench