Patents by Inventor Omkar G. Karhade

Omkar G. Karhade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210287974
    Abstract: Methods/structures of joining package structures are described. Those methods/structures may include a device disposed on first side of substrate and an array of conductive interconnect structures disposed on a second side of the first substrate. The conductive interconnect structures of the array may comprise a solder material, wherein the solder material comprises a low temperature alloying element concentration of less than about 5 percent. A second substrate is coupled to the array of conductive interconnect structures.
    Type: Application
    Filed: September 29, 2016
    Publication date: September 16, 2021
    Applicant: Intel Corporation
    Inventors: Omkar G. Karhade, Nachiket R. Raravikar, Sandeep B. Sane
  • Patent number: 11114388
    Abstract: Techniques for reducing warpage for microelectronic packages are provided. A warpage control layer or stiffener can be attached to a bottom surface of a substrate or layer that is used to attach the microelectronics package to a motherboard. The warpage control layer can have a thickness approximately equal to a thickness of a die of the microelectronics package. A coefficient of thermal expansion of the warpage control layer can be selected to approximately match a CTE of the die. The warpage control layer can be formed from an insulating material or a metallic material. The warpage control layer can comprise multiple materials and can include copper pillar segments to adjust the effective CTE of the warpage control layer. The warpage control layer can be positioned between the microelectronics package and the motherboard, thereby providing warpage control without contributing to the z-height of the microelectronics package.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: September 7, 2021
    Assignee: INTEL CORPORATION
    Inventors: Eric J. Li, Guotao Wang, Huiyang Fei, Sairam Agraharam, Omkar G. Karhade, Nitin A. Deshpande
  • Publication number: 20210272905
    Abstract: Embodiments may relate to a microelectronic package that includes a substrate with a cavity therein. A component may be positioned within the substrate, and exposed by the cavity. A solder bump may be positioned within the cavity and coupled with the component, and a bridge die may be coupled with the solder bump. Other embodiments may be described or claimed.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 2, 2021
    Applicant: Intel Corporation
    Inventors: Omkar G. Karhade, Debendra Mallik, Nitin A. Deshpande, Amruthavalli Pallavi Alur
  • Publication number: 20210066265
    Abstract: Disclosed herein are tunable capacitor arrangements in integrated circuit (IC) package substrates, as well as related methods and devices. For example, in some embodiments, an IC package substrate may include a first embedded capacitor, a second embedded capacitor, and a fuse electrically coupled between the first embedded capacitor and the second embedded capacitor such that when the fuse is in a closed state, the first embedded capacitor and the second embedded capacitor are connected in parallel, and when the fuse is in an open state, the first embedded capacitor and the second embedded capacitor are not connected in parallel.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 4, 2021
    Applicant: Intel Corporation
    Inventors: Feras Eid, Aleksandar Aleksov, Telesphor Kamgaing, Georgios Dogiamis, Johanna M. Swan, Sivakumar Nagarajan, Nitin A. Deshpande, Omkar G. Karhade, William James Lambert
  • Publication number: 20200350181
    Abstract: Embodiments of the invention include device packages and methods of forming such packages. In an embodiment, the method of forming a device package may comprise forming a reinforcement layer over a substrate. One or more openings may be formed through the reinforcement layer. In an embodiment, a device die may be placed into one of the openings. The device die may be bonded to the substrate by reflowing one or more solder bumps positioned between the device die and the substrate. Embodiments of the invention may include a molded reinforcement layer. Alternative embodiments include a reinforcement layer that is adhered to the surface of the substrate with an adhesive layer.
    Type: Application
    Filed: June 29, 2020
    Publication date: November 5, 2020
    Inventors: Omkar G. KARHADE, Nitin A. DESHPANDE, Debendra MALLIK, Bassam M. ZIADEH, Yoshihiro TOMITA
  • Patent number: 10797000
    Abstract: A microelectronic structure includes a substrate having a first surface and a cavity extending into the substrate from the substrate first surface, a first microelectronic device and a second microelectronic device attached to the substrate first surface, and a bridge disposed within the substrate cavity and attached to the first microelectronic device and to the second microelectronic device. The bridge includes a plurality conductive vias extending from a first surface to an opposing second surface of the bridge, wherein the conductive vias are electrically coupled to deliver electrical signals from the substrate to the first microelectronic device and the second microelectronic device. The bridge further creates at least one electrical signal connection between the first microelectronic device and the second microelectronic device.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: October 6, 2020
    Assignee: Intel Corporation
    Inventors: Nitin A. Deshpande, Omkar G. Karhade
  • Patent number: 10741419
    Abstract: Embodiments of the invention include device packages and methods of forming such packages. In an embodiment, the method of forming a device package may comprise forming a reinforcement layer over a substrate. One or more openings may be formed through the reinforcement layer. In an embodiment, a device die may be placed into one of the openings. The device die may be bonded to the substrate by reflowing one or more solder bumps positioned between the device die and the substrate. Embodiments of the invention may include a molded reinforcement layer. Alternative embodiments include a reinforcement layer that is adhered to the surface of the substrate with an adhesive layer.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: August 11, 2020
    Assignee: Intel Corporation
    Inventors: Omkar G. Karhade, Nitin A. Deshpande, Debendra Mallik, Bassam M. Ziadeh, Yoshihiro Tomita
  • Publication number: 20200203839
    Abstract: Disclosed herein are antenna boards, antenna modules, and communication devices. For example, in some embodiments, an antenna board may include a plurality of antenna patches coupled to a dielectric material and a plurality of pedestals extending from a face of the dielectric material and at least partially embedded in the dielectric material.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Applicant: Intel Corporation
    Inventors: Omkar G. Karhade, William James Lambert, Xiaoqian Li, Nitin A. Deshpande, Debendra Mallik
  • Patent number: 10672626
    Abstract: Embodiments describe a semiconductor package that includes a substrate, a die bonded to the substrate, and a solder paste overmold layer formed over a top surface of the die. In an embodiment, the solder paste comprises a high-melting point metal, a solder matrix, intermetallic compounds and a polymer. The overmold layer has a high elastic modulus, a coefficient of thermal expansion similar to the substrate, and reduces the warpage of the package. In an embodiment, interconnects of a semiconductor package are formed with a no-slump solder paste that includes vents. Vents may be formed through a conductive network formed by the high-melting point metal, solder matrix and intermetallic compounds. In an embodiment, vents provide a path through the interconnect that allows for moisture outgassing. In an embodiment, a mold layer may be mechanically anchored to the interconnects by the vents, thereby providing improved mechanical continuity to the mold layer.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: June 2, 2020
    Assignee: Intel Corporation
    Inventors: Omkar G. Karhade, Nitin A. Deshpande, Aditya S. Vaidya, Nachiket R. Raravikar, Eric J. Li
  • Publication number: 20190341271
    Abstract: Embodiments of the invention include device packages and methods of forming such packages. In an embodiment, the method of forming a device package may comprise forming a reinforcement layer over a substrate. One or more openings may be formed through the reinforcement layer. In an embodiment, a device die may be placed into one of the openings. The device die may be bonded to the substrate by reflowing one or more solder bumps positioned between the device die and the substrate. Embodiments of the invention may include a molded reinforcement layer. Alternative embodiments include a reinforcement layer that is adhered to the surface of the substrate with an adhesive layer.
    Type: Application
    Filed: July 18, 2019
    Publication date: November 7, 2019
    Inventors: Omkar G. KARHADE, Nitin A. DESHPANDE, Debendra MALLIK, Bassam M. ZIADEH, Yoshihiro TOMITA
  • Publication number: 20190330051
    Abstract: Embodiments include a microelectronic device package structure having a die on a substrate, where a first side of the die is electrically coupled to the substrate, and a second side of the die is covered with a first material having a first thermal conductivity. A second material is adjacent to a sidewall of the die and adjacent to a sidewall of the first material. The second material has second thermal conductivity, smaller than the first thermal conductivity. The second material may have mechanical and/or underfill properties superior to those of the first material. Together, the two materials may provide a package structure having enhanced thermal and mechanical performance.
    Type: Application
    Filed: April 25, 2018
    Publication date: October 31, 2019
    Applicant: Intle Corporation
    Inventors: Omkar G. Karhade, Nitin A. Deshpande
  • Publication number: 20190279960
    Abstract: Disclosed herein are integrated circuit (IC) packages with plates, as well as related devices and methods. For example, in some embodiments, an IC package may include: a package substrate; a plurality of electrical components secured to a face of the package substrate; and a plate secured to the plurality of electrical components with an adhesive such that the plurality of electrical components are between the plate and the package substrate.
    Type: Application
    Filed: December 14, 2016
    Publication date: September 12, 2019
    Applicant: Intel Corporation
    Inventors: Omkar G. Karhade, Edvin Cetegen, Sandeep B. Sane
  • Patent number: 10403512
    Abstract: Embodiments of the invention include device packages and methods of forming such packages. In an embodiment, the method of forming a device package may comprise forming a reinforcement layer over a substrate. One or more openings may be formed through the reinforcement layer. In an embodiment, a device die may be placed into one of the openings. The device die may be bonded to the substrate by reflowing one or more solder bumps positioned between the device die and the substrate. Embodiments of the invention may include a molded reinforcement layer. Alternative embodiments include a reinforcement layer that is adhered to the surface of the substrate with an adhesive layer.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: September 3, 2019
    Assignee: Intel Corporation
    Inventors: Omkar G. Karhade, Nitin A. Deshpande, Debendra Mallik, Bassam M. Ziadeh, Yoshihiro Tomita
  • Publication number: 20190259713
    Abstract: Techniques for reducing warpage for microelectronic packages are provided. A warpage control layer or stiffener can be attached to a bottom surface of a substrate or layer that is used to attach the microelectronics package to a motherboard. The warpage control layer can have a thickness approximately equal to a thickness of a die of the microelectronics package. A coefficient of thermal expansion of the warpage control layer can be selected to approximately match a CTE of the die. The warpage control layer can be formed from an insulating material or a metallic material. The warpage control layer can comprise multiple materials and can include copper pillar segments to adjust the effective CTE of the warpage control layer. The warpage control layer can be positioned between the microelectronics package and the motherboard, thereby providing warpage control without contributing to the z-height of the microelectronics package.
    Type: Application
    Filed: February 20, 2019
    Publication date: August 22, 2019
    Applicant: INTEL CORPORATION
    Inventors: ERIC J. LI, GUOTAO WANG, HUIYANG FEI, SAIRAM AGRAHARAM, OMKAR G. KARHADE, NITIN A. DESHPANDE
  • Publication number: 20190157205
    Abstract: A microelectronic structure includes a substrate having a first surface and a cavity extending into the substrate from the substrate first surface, a first microelectronic device and a second microelectronic device attached to the substrate first surface, and a bridge disposed within the substrate cavity and attached to the first microelectronic device and to the second microelectronic device. The bridge includes a plurality conductive vias extending from a first surface to an opposing second surface of the bridge, wherein the conductive vias are electrically coupled to deliver electrical signals from the substrate to the first microelectronic device and the second microelectronic device. The bridge further creates at least one electrical signal connection between the first microelectronic device and the second microelectronic device.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Applicant: INTEL CORPORATION
    Inventors: Nitin A. Deshpande, Omkar G. Karhade
  • Publication number: 20190148268
    Abstract: Underfill material flow control for reduced die-to-die spacing in semiconductor packages and the resulting semiconductor packages are described. In an example, a semiconductor apparatus includes first and second semiconductor dies, each having a surface with an integrated circuit thereon coupled to contact pads of an uppermost metallization layer of a common semiconductor package substrate by a plurality of conductive contacts, the first and second semiconductor dies separated by a spacing. A barrier structure is disposed between the first semiconductor die and the common semiconductor package substrate and at least partially underneath the first semiconductor die. An underfill material layer is in contact with the second semiconductor die and with the barrier structure, but not in contact with the first semiconductor die.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Inventors: Omkar G. KARHADE, Nitin A. DESHPANDE, Rajendra C. DIAS, Edvin CETEGEN, Lars D. SKOGLUND
  • Patent number: 10290561
    Abstract: A thermal interface may include a wired network made of a first TIM, and a second TIM surrounding the wired network. A heat spreader lid may include a wired network attached to an inner surface of the heat spreader lid. An IC package may include a heat spreader lid placed over a first electronic component and a second electronic component. A first thermal interface may be formed between the first electronic component and the inner surface of the heat spreader lid, and a second thermal interface may be formed between the second electronic component and the inner surface of the heat spreader lid. The first thermal interface may include a wired network of a first TIM surrounded by a second TIM, while the second thermal interface may include the second TIM, without a wired network of the first TIM. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: May 14, 2019
    Assignee: Intel Corporation
    Inventors: Edvin Cetegen, Omkar G. Karhade, Kedar Dhane, Chandra M. Jha
  • Patent number: 10256198
    Abstract: Techniques for reducing warpage for microelectronic packages are provided. A warpage control layer or stiffener can be attached to a bottom surface of a substrate or layer that is used to attach the microelectronics package to a motherboard. The warpage control layer can have a thickness approximately equal to a thickness of a die of the microelectronics package. A coefficient of thermal expansion of the warpage control layer can be selected to approximately match a CTE of the die. The warpage control layer can be formed from an insulating material or a metallic material. The warpage control layer can comprise multiple materials and can include copper pillar segments to adjust the effective CTE of the warpage control layer. The warpage control layer can be positioned between the microelectronics package and the motherboard, thereby providing warpage control without contributing to the z-height of the microelectronics package.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: April 9, 2019
    Assignee: INTEL CORPORATION
    Inventors: Eric J. Li, Guotao Wang, Huiyang Fei, Sairam Agraharam, Omkar G. Karhade, Nitin A. Deshpande
  • Patent number: 10229882
    Abstract: A microelectronic structure includes a substrate having a first surface and a cavity extending into the substrate from the substrate first surface, a first microelectronic device and a second microelectronic device attached to the substrate first surface, and a bridge disposed within the substrate cavity and attached to the first microelectronic device and to the second microelectronic device. The bridge includes a plurality conductive vias extending from a first surface to an opposing second surface of the bridge, wherein the conductive vias are electrically coupled to deliver electrical signals from the substrate to the first microelectronic device and the second microelectronic device. The bridge further creates at least one electrical signal connection between the first microelectronic device and the second microelectronic device.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: March 12, 2019
    Assignee: Intel Corporation
    Inventors: Nitin A. Deshpande, Omkar G. Karhade
  • Patent number: 10192810
    Abstract: Underfill material flow control for reduced die-to-die spacing in semiconductor packages and the resulting semiconductor packages are described. In an example, a semiconductor apparatus includes first and second semiconductor dies, each having a surface with an integrated circuit thereon coupled to contact pads of an uppermost metallization layer of a common semiconductor package substrate by a plurality of conductive contacts, the first and second semiconductor dies separated by a spacing. A barrier structure is disposed between the first semiconductor die and the common semiconductor package substrate and at least partially underneath the first semiconductor die. An underfill material layer is in contact with the second semiconductor die and with the barrier structure, but not in contact with the first semiconductor die.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: January 29, 2019
    Assignee: Intel Corporation
    Inventors: Omkar G. Karhade, Nitin A. Deshpande, Rajendra C. Dias, Edvin Cetegen, Lars D. Skoglund