Patents by Inventor Oray Orkun Cellek

Oray Orkun Cellek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170347047
    Abstract: An image sensor for detecting light-emitting diode (LED) without flickering includes a pixel array with pixels. Each pixel including subpixels including a first and a second subpixel, dual floating diffusion (DFD) transistor, and a capacitor coupled to the DFD transistor. First subpixel includes a first photosensitive element to acquire a first image charge, and a first transfer gate transistor to selectively transfer the first image charge from the first photosensitive element to a first floating diffusion (FD) node. Second subpixel includes a second photosensitive element to acquire a second image charge, and a second transfer gate transistor to selectively transfer the second image charge from the second photosensitive element to a second FD node. DFD transistor coupled to the first and the second FD nodes. Other embodiments are also described.
    Type: Application
    Filed: May 25, 2016
    Publication date: November 30, 2017
    Inventors: Duli Mao, Trygve Willassen, Johannes Solhusvik, Keiji Mabuchi, Gang Chen, Sohei Manabe, Dyson H. Tai, Bill Phan, Oray Orkun Cellek, Zhiqiang Lin, Siguang Ma, Dajiang Yang, Boyd Albert Fowler
  • Patent number: 9818791
    Abstract: A stacked image sensor includes a first plurality of photodiodes, including a first photodiode and a second photodiode, disposed in a first semiconductor material. A thickness of the first semiconductor material proximate to the first photodiode is less than the thickness of the first semiconductor material proximate to the second photodiode. A second plurality of photodiodes is disposed in a second semiconductor material. The second plurality of photodiodes is optically aligned with the first plurality of photodiodes. An interconnect layer is disposed between the first semiconductor material and the second semiconductor material. The interconnect layer includes an optical shield disposed between the second photodiode and a third photodiode included in the second plurality of photodiodes. The optical shield prevents a first portion of image light from reaching the third photodiode.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: November 14, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Zhiqiang Lin, Keiji Mabuchi, Gang Chen, Dyson H. Tai, Bill Phan, Oray Orkun Cellek, Dajiang Yang
  • Patent number: 9679940
    Abstract: A fractal-edge thin film includes a material layer having a perimeter with a fractal dimension exceeding one, the material layer having greater peel resistance as compared to a thin-film material layer with fractal dimension equaling one. A method of manufacturing a fractal-edge thin film includes determining an area shape to be covered by the fractal-edge thin film. The method also includes generating a thin-film perimeter based upon the area shape, the thin-film perimeter having a fractal dimension exceeding one. The method also includes determining a photomask perimeter such that a photomask with the photomask perimeter, when used in a photolithography process, yields a fractal-edge thin film with the thin-film perimeter. The method may also include photolithographically etching a thin-film, the thin film having a photoresist layer disposed thereon, the photoresist layer having been exposed through the photomask, wherein the etching results in the fractal-edge thin film.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: June 13, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventor: Oray Orkun Cellek
  • Publication number: 20170005133
    Abstract: A method of manufacturing a fractal-edge thin film includes determining an area shape to be covered by the fractal-edge thin film. The method also includes generating a thin-film perimeter based upon the area shape, the thin-film perimeter having a fractal dimension exceeding one. The method also includes determining a photomask perimeter such that a photomask with the photomask perimeter, when used in a photolithography process, yields a fractal-edge thin film with the thin-film perimeter. The method may also include photolithographically etching a thin-film, the thin film having a photoresist layer disposed thereon, the photoresist layer having been exposed through the photomask, wherein the etching results in the fractal-edge thin film.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventor: Oray Orkun Cellek
  • Publication number: 20160372507
    Abstract: An image sensor includes photodiodes arranged in semiconductor material. Each of the photodiodes is identically sized and is fabricated in the semiconductor material with identical semiconductor processing conditions. The photodiodes are organized into virtual large-small groupings including a first photodiode and a second photodiode. Microlenses are disposed over the semiconductor material with each of microlenses disposed over a respective photodiode. A first microlens is disposed over the first photodiode, and a second microlens is disposed over the second photodiode. A mask is disposed between the first microlens and the first photodiode. The mask includes an opening through which a first portion of incident light directed through the first microlens is directed to the first photodiode. A second portion of the incident light directed through the first microlens is blocked by the mask from reaching the first photodiode. There is no mask between the second microlens and the second photodiode.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 22, 2016
    Inventors: Dajiang Yang, Gang Chen, Oray Orkun Cellek, Zhenhong Fu, Chen-Wei Lu, Duli Mao, Dyson H. Tai
  • Patent number: 9312299
    Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion region, a transfer gate, a dielectric charge trapping region, and a first metal contact. The photosensitive element is disposed in a semiconductor layer to receive electromagnetic radiation along a vertical axis. The floating diffusion region is disposed in the semiconductor layer, while the transfer gate is disposed on the semiconductor layer to control a flow of charge produced in the photosensitive element to the floating diffusion region. The dielectric charge trapping device is disposed on the semiconductor layer to receive electromagnetic radiation along the vertical axis and to trap charges in response thereto. The dielectric charge trapping device is further configured to induce charge in the photosensitive element in response to the trapped charges. The first metal contact is coupled to the dielectric charge trapping device to provide a first bias voltage to the dielectric charge trapping device.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: April 12, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Oray Orkun Cellek, Dajiang Yang, Sing-Chung Hu, Philip John Cizdziel, Dyson Tai, Gang Chen, Cunyu Yang, Zhiqiang Lin
  • Patent number: 9287308
    Abstract: An image sensor pixel includes one or more photodiodes disposed in a semiconductor layer. Pixel circuitry is disposed in the semiconductor layer coupled to the one or more photodiodes. A passivation layer is disposed proximate to the semiconductor layer over the pixel circuitry and the one or more photodiodes. A contact etch stop layer is disposed over the passivation layer. One or more metal contacts are coupled to the pixel circuitry through the contact etch stop layer. One or more isolation regions are defined in the contact etch stop layer that isolate contact etch stop layer material through which the one or more metal contacts are coupled are coupled to the pixel circuitry from the one or more photodiodes.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: March 15, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sing-Chung Hu, Dajiang Yang, Oray Orkun Cellek, Hsin-Chih Tai, Gang Chen
  • Publication number: 20160005774
    Abstract: A fractal-edge thin film includes a material layer having a perimeter with a fractal dimension exceeding one, the material layer having greater peel resistance as compared to a thin-film material layer with fractal dimension equaling one. A method of manufacturing a fractal-edge thin film includes determining an area shape to be covered by the fractal-edge thin film. The method also includes generating a thin-film perimeter based upon the area shape, the thin-film perimeter having a fractal dimension exceeding one. The method also includes determining a photomask perimeter such that a photomask with the photomask perimeter, when used in a photolithography process, yields a fractal-edge thin film with the thin-film perimeter. The method may also include photolithographically etching a thin-film, the thin film having a photoresist layer disposed thereon, the photoresist layer having been exposed through the photomask, wherein the etching results in the fractal-edge thin film.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 7, 2016
    Inventor: Oray Orkun Cellek
  • Patent number: 9224881
    Abstract: An imaging device includes a semiconductor substrate having a photosensitive element for accumulating charge in response to incident image light. The semiconductor substrate includes a light-receiving surface positioned to receive the image light. The imaging device also includes a negative charge layer and a charge sinking layer. The negative charge layer is disposed proximate to the light-receiving surface of the semiconductor substrate to induce holes in an accumulation zone in the semiconductor substrate along the light-receiving surface. The charge sinking layer is disposed proximate to the negative charge layer and is configured to conserve or increase an amount of negative charge in the negative charge layer. The negative charge layer is disposed between the semiconductor substrate and the charge sinking layer.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: December 29, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chih-Wei Hsiung, Oray Orkun Cellek, Gang Chen, Duli Mao, Vincent Venezia, Hsin-Chih Tai
  • Patent number: 9184194
    Abstract: Multi-band photodetectors can be formed by series connecting unipolar and, optionally, bipolar semiconductor structures, each having different photodetection bands. Under default mode of operation, the detector with highest resistance and lowest current will be the current limiting device and will be the active photodetector. When the active photodetector is illuminated with strong light in its own detection band it will be optically biased. This active photodetector will no longer be the highest resistance device, and the next photodetector will be the active photodetector. Repeating this operation pattern, allows switching photodetection bands of the multi-band photodetector. The resistances, dark current and photocurrent of the devices should be engineered to have proper switching. Moreover, the illuminating surface, and photodetector placement should be optimized for proper light biasing. The current passing through the device will always be equal to the current of the active photodetector.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: November 10, 2015
    Assignee: Arizona Board of Regents, A Body Corporate of the State of Arizona, Acting for and on Behalf of Arizona State University
    Inventors: Oray Orkun Cellek, Yong-Hang Zhang
  • Publication number: 20150295007
    Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion region, a transfer gate, a dielectric charge trapping region, and a first metal contact. The photosensitive element is disposed in a semiconductor layer to receive electromagnetic radiation along a vertical axis. The floating diffusion region is disposed in the semiconductor layer, while the transfer gate is disposed on the semiconductor layer to control a flow of charge produced in the photosensitive element to the floating diffusion region. The dielectric charge trapping device is disposed on the semiconductor layer to receive electromagnetic radiation along the vertical axis and to trap charges in response thereto. The dielectric charge trapping device is further configured to induce charge in the photosensitive element in response to the trapped charges. The first metal contact is coupled to the dielectric charge trapping device to provide a first bias voltage to the dielectric charge trapping device.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 15, 2015
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Oray Orkun Cellek, Dajiang Yang, Sing-Chung Hu, Philip John Cizdziel, Dyson Tai, Gang Chen, Cunyu Yang, Zhiqiang Lin
  • Publication number: 20140299956
    Abstract: An imaging device includes a semiconductor substrate having a photosensitive element for accumulating charge in response to incident image light. The semiconductor substrate includes a light-receiving surface positioned to receive the image light. The imaging device also includes a negative charge layer and a charge sinking layer. The negative charge layer is disposed proximate to the light-receiving surface of the semiconductor substrate to induce holes in an accumulation zone in the semiconductor substrate along the light-receiving surface. The charge sinking layer is disposed proximate to the negative charge layer and is configured to conserve or increase an amount of negative charge in the negative charge layer. The negative charge layer is disposed between the semiconductor substrate and the charge sinking layer.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: OmniVision Technologies, Inc.
    Inventors: Chih-Wei Hsiung, Oray Orkun Cellek, Gang Chen, Duli Mao, Vincent Venezia, Hsin-Chih Tai
  • Publication number: 20140299957
    Abstract: An image sensor pixel includes one or more photodiodes disposed in a semiconductor layer. Pixel circuitry is disposed in the semiconductor layer coupled to the one or more photodiodes. A passivation layer is disposed proximate to the semiconductor layer over the pixel circuitry and the one or more photodiodes. A contact etch stop layer is disposed over the passivation layer. One or more metal contacts are coupled to the pixel circuitry through the contact etch stop layer. One or more isolation regions are defined in the contact etch stop layer that isolate contact etch stop layer material through which the one or more metal contacts are coupled are coupled to the pixel circuitry from the one or more photodiodes.
    Type: Application
    Filed: April 8, 2013
    Publication date: October 9, 2014
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Sing-Chung Hu, Dajiang Yang, Oray Orkun Cellek, Hsin-Chih Tai, Gang Chen