Patents by Inventor Ovadia Abed

Ovadia Abed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9598776
    Abstract: Micron-sized metal particles in an ink or paste composition are deposited onto a substrate and then photosimered. The substrate may comprise a polymeric material. The polymeric substrate may have a coefficient of thermal expansion greater than two times the coefficient of thermal expansion of the photosimered ink or paste composition.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: March 21, 2017
    Assignee: PEN Inc.
    Inventors: Ovadia Abed, Valerie Kaye Ginsberg, James P. Novak
  • Publication number: 20160318066
    Abstract: An inkjet-based process for programmable deposition of thin films of a user-defined profile. Drops of a pre-cursor liquid organic material are dispensed at various locations on a substrate by a multi-jet. A superstrate is held in a roll-to-roll configuration such that a first contact of the drops is made by a front side of the superstrate thereby initiating a liquid front that spreads outward merging with the drops to form a contiguous film captured between the substrate and the superstrate. A non-equilibrium transient state of the superstrate, the contiguous film and the substrate then occurs after a duration of time. The contiguous film is then cured to crosslink it into a polymer. The superstrate is then separated from the polymer thereby leaving a polymer film on the substrate. In such a manner, non-uniform films can be formed without significant material wastage in an inexpensive manner.
    Type: Application
    Filed: July 12, 2016
    Publication date: November 3, 2016
    Inventors: Sidlgata V. Sreenivasan, Shrawan Singhal, Ovadia Abed, Lawrence Dunn
  • Publication number: 20160308020
    Abstract: Methods for fabricating and replicating self-aligned multi-tier nanoscale structures for a variety of cross-sectional geometries. These methods can utilize a single lithography step whereby the need for alignment and overlay in the process is completely eliminated thereby enabling near-zero overlay error. Furthermore, techniques are developed to use these methods to fabricate self-aligned nanoscale multi-level/multi-height patterns with various shapes for master templates, replica templates and nanoimprint based pattern replication. Furthermore, the templates can be used to pattern multiple levels in a sacrificial polymer resist and achieve pattern transfer of the levels into a variety of substrates to form completed large area nanoelectronic and nanophotonic devices using only one patterning step.
    Type: Application
    Filed: April 19, 2016
    Publication date: October 20, 2016
    Inventors: Sidlgata V. Sreenivasan, Praveen Joseph, Ovadia Abed, Michelle Grigas, Akhila Mallavarapu, Paras Ajay
  • Publication number: 20160118249
    Abstract: A method for template fabrication of ultra-precise nanoscale shapes. Structures with a smooth shape (e.g., circular cross-section pillars) are formed on a substrate using electron beam lithography. The structures are subject to an atomic layer deposition of a dielectric interleaved with a deposition of a conductive film leading to nanoscale sharp shapes with features that exceed electron beam resolution capability of sub-10 nm resolution. A resist imprint of the nanoscale sharp shapes is performed using J-FIL. The nanoscale sharp shapes are etched into underlying functional films on the substrate forming a nansohaped template with nanoscale sharp shapes that include sharp corners and/or ultra-small gaps. In this manner, sharp shapes can be retained at the nanoscale level. Furthermore, in this manner, imprint based shape control for novel shapes beyond elementary nanoscale structures, such as dots and lines, can occur at the nanoscale level.
    Type: Application
    Filed: October 23, 2015
    Publication date: April 28, 2016
    Inventors: Sidlgata V. Sreenivasan, Anshuman Cherala, Meghali Chopra, Roger Bonnecaze, Ovadia Abed, Bailey Yin, Akhila Mallavarapu, Shrawan Singhal, Brian Gawlik
  • Publication number: 20150147486
    Abstract: Micron-sized metal particles in an ink or paste composition are deposited onto a substrate and then photosimered. The substrate may comprise a polymeric material. The polymeric substrate may have a coefficient of thermal expansion greater than two times the coefficient of thermal expansion of the photosimered ink or paste composition.
    Type: Application
    Filed: July 9, 2013
    Publication date: May 28, 2015
    Inventors: Ovadia Abed, Valerie Kaye Ginsberg, James P. Novak
  • Patent number: 8889471
    Abstract: For solar cell fabrication, the addition of precursors to printable media to assist etching through silicon nitride or silicon oxide layer thus affording contact with the substance underneath the nitride or oxide layer. The etching mechanism may be by molten ceramics formed in situ, fluoride-based etching, as well as a combination of the two.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: November 18, 2014
    Assignee: Sichuan Yinhe Chemical Co., Ltd.
    Inventors: Ovadia Abed, Yunjun Li, James P. Novak, Samuel Kim, Patrick Ferguson
  • Publication number: 20120288991
    Abstract: For solar cell fabrication, the addition of precursors to printable media to assist etching through silicon nitride or silicon oxide layer thus affording contact with the substance underneath the nitride or oxide layer. The etching mechanism may be by molten ceramics formed in situ, fluoride-based etching, as well as a combination of the two.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 15, 2012
    Applicant: APPLIED NANOTECH HOLDINGS, INC.
    Inventors: Ovadia Abed, Yunjun Li, James P. Novak, Samuel Kim