Patents by Inventor Owen R. Fay

Owen R. Fay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8659153
    Abstract: Methods of fabricating interconnect structures for semiconductor dice comprise forming conductive elements in contact with bond pads on an active surface over a full pillar diameter of the conductive elements, followed by application of a photodefinable material comprising a photoresist to the active surface and over the conductive elements. The polymide material is selectively exposed and developed to remove photodefinable material covering at least tops of the conductive elements. Semiconductor dice and semiconductor die assemblies are also disclosed.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: February 25, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Owen R. Fay, Luke G. England, Christopher J. Gambee
  • Publication number: 20140015124
    Abstract: Methods of fabricating interconnect structures for semiconductor dice comprise forming conductive elements in contact with bond pads on an active surface over a full pillar diameter of the conductive elements, followed by application of a photodefinable material comprising a photoresist to the active surface and over the conductive elements. The polymide material is selectively exposed and developed to remove photodefinable material covering at least tops of the conductive elements. Semiconductor dice and semiconductor die assemblies are also disclosed.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 16, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Owen R. Fay, Luke G. England, Christopher J. Gambee
  • Publication number: 20130234296
    Abstract: Interconnect structures for stacked dies, including penetrating structures for through-silicon vias, and associated systems and methods are disclosed. A system in accordance with a particular embodiment includes a first semiconductor substrate having a first substrate material, and a penetrating structure carried by the first semiconductor substrate. The system further includes a second semiconductor substrate having a second substrate material with a preformed recess. The penetrating structure of the first semiconductor substrate is received in the recess of the second semiconductor substrate and is mechanically engaged with the recess and secured to the second semiconductor substrate.
    Type: Application
    Filed: April 26, 2013
    Publication date: September 12, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Owen R. Fay, Warren M. Farnworth, David R. Hembree
  • Patent number: 8435836
    Abstract: Interconnect structures for stacked dies, including penetrating structures for through-silicon vias, and associated systems and methods are disclosed. A system in accordance with a particular embodiment includes a first semiconductor substrate having a first substrate material, and a penetrating structure carried by the first semiconductor substrate. The system further includes a second semiconductor substrate having a second substrate material with a preformed recess. The penetrating structure of the first semiconductor substrate is received in the recess of the second semiconductor substrate and is mechanically engaged with the recess and secured to the second semiconductor substrate.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: May 7, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Owen R. Fay, Warren M. Farnworth, David R. Hembree
  • Publication number: 20110111561
    Abstract: Interconnect structures for stacked dies, including penetrating structures for through-silicon vias, and associated systems and methods are disclosed. A system in accordance with a particular embodiment includes a first semiconductor substrate having a first substrate material, and a penetrating structure carried by the first semiconductor substrate. The system further includes a second semiconductor substrate having a second substrate material with a preformed recess. The penetrating structure of the first semiconductor substrate is received in the recess of the second semiconductor substrate and is mechanically engaged with the recess and secured to the second semiconductor substrate.
    Type: Application
    Filed: January 14, 2011
    Publication date: May 12, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Owen R. Fay, Warren M. Farnworth, David R. Hembree
  • Patent number: 7872332
    Abstract: Interconnect structures for stacked dies, including penetrating structures for through-silicon vias, and associated systems and methods are disclosed. A system in accordance with a particular embodiment includes a first semiconductor substrate having a first substrate material, and a penetrating structure carried by the first semiconductor substrate. The system further includes a second semiconductor substrate having a second substrate material with a preformed recess. The penetrating structure of the first semiconductor substrate is received in the recess of the second semiconductor substrate and is mechanically engaged with the recess and secured to the second semiconductor substrate.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: January 18, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Owen R. Fay, Warren M. Farnworth, David R. Hembree
  • Publication number: 20100059897
    Abstract: Interconnect structures for stacked dies, including penetrating structures for through-silicon vias, and associated systems and methods are disclosed. A system in accordance with a particular embodiment includes a first semiconductor substrate having a first substrate material, and a penetrating structure carried by the first semiconductor substrate. The system further includes a second semiconductor substrate having a second substrate material with a preformed recess. The penetrating structure of the first semiconductor substrate is received in the recess of the second semiconductor substrate and is mechanically engaged with the recess and secured to the second semiconductor substrate.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Owen R. Fay, Warren M. Farnworth, David R. Hembree
  • Publication number: 20090243012
    Abstract: A microelectronic device assembly with an integrated conductive shield is disclosed herein. The microelectronic device assembly includes a semiconductor substrate, an integrated circuit carried by the semiconductor substrate, a dielectric encapsulant encasing at least a portion of the semiconductor substrate. The microelectronic device assembly also includes a conductive shield in direct contact with at least a portion of the dielectric encapsulant and an interconnect extending through the semiconductor substrate and in direct contact with the conductive shield.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kiran Kumar Vanam, Derek J. Gochnour, Alan G. Wood, James M. Derderian, Luke G. England, Owen R. Fay
  • Publication number: 20090243051
    Abstract: Microelectronic device assemblies having integrated conductive shields are disclosed herein. The microelectronic device assemblies include a semiconductor substrate having a bond site and a solder ball electrically connected to the bond site, a dielectric sidewall at least partially encapsulating the semiconductor substrate, and a conductive shield in direct contact with the sidewall and in electrical communication with the solder ball and the bond site.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kiran Kumar Vanam, Alan G. Wood, James M. Derderian, Derek J. Gochnour, Owen R. Fay, Luke G. England
  • Patent number: 7595226
    Abstract: A structure (40) for holding an integrated circuit die (38) during packaging includes a support substrate (42), a release film (44) attached to the substrate (42), and a swelling agent (60). A method (34) of packaging the die (38) includes placing the die (38) on the substrate (42) with its active surface (52) and bond pads (54) in contact with the film (44). The agent (60) is applied over an adhesive coating (50) of the film (44). The agent (60) causes the adhesive (50) to swell into contact with the bond pads (54) and/or to form fillets (64) of adhesive (50) about the die (38). The die (38) is encapsulated in a molding material (72) and released from the substrate (42) as a panel (74) of dies (38). Swelling of the adhesive (50) about the bond pads (54) prevents the molding material (72) from bleeding onto the bond pads (54).
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: September 29, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William H. Lytle, Owen R. Fay, Jianwen Xu
  • Patent number: 7579219
    Abstract: A semiconductor device includes a semiconductor die having a plurality of contact pad sites, a plurality of contact pads, an encapsulant barrier, and an encapsulant. A plurality of contact pads is in electrical contact with a predetermined corresponding different one of the contact pad sites. An encapsulant barrier is positioned at an outer perimeter of the semiconductor die. The encapsulant barrier has a height that is as high as or greater than a highest of the plurality of contact pads. The encapsulant barrier is in physical contact with a same surface of the semiconductor die as the contact pad sites. An encapsulant surrounds the semiconductor die and one side of the encapsulant barrier. The encapsulant is blocked from making physical contact with any of the plurality of contact pads by the encapsulant barrier when the device is encapsulated while being supported by a temporary base support layer.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: August 25, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: George R. Leal, Owen R. Fay, Robert J. Wenzel
  • Publication number: 20090061564
    Abstract: A structure (40) for holding an integrated circuit die (38) during packaging includes a support substrate (42), a release film (44) attached to the substrate (42), and a swelling agent (60). A method (34) of packaging the die (38) includes placing the die (38) on the substrate (42) with its active surface (52) and bond pads (54) in contact with the film (44). The agent (60) is applied over an adhesive coating (50) of the film (44). The agent (60) causes the adhesive (50) to swell into contact with the bond pads (54) and/or to form fillets (64) of adhesive (50) about the die (38). The die (38) is encapsulated in a molding material (72) and released from the substrate (42) as a panel (74) of dies (38). Swelling of the adhesive (50) about the bond pads (54) prevents the molding material (72) from bleeding onto the bond pads (54).
    Type: Application
    Filed: August 29, 2007
    Publication date: March 5, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: William H. Lytle, Owen R. Fay, Jianwen Xu
  • Patent number: 7425464
    Abstract: Methods and apparatus are provided for encapsulating electronic devices, comprising: providing one or more electronic devices (62) with primary faces (63) having electrical contacts (69), opposed rear faces (65) and edges (64) therebetween. A sacrificial layer (70) is provided on the primary faces (63). The devices (62) are mounted on a temporary support (80) so that the sacrificial layer (70) faces toward the temporary support (80). A plastic encapsulation (86)is formed in contact with at least the lateral edges (64) of the electronic devices (62). The plastic encapsulation (86) is at least partially cured and the devices (62) and plastic encapsulation (86) separated from the temporary support (80), thereby exposing the sacrificial layer (70). The sacrificial layer (70) is removed. The devices (62) and edge-contacting encapsulation are mounted on a carrier (90) with the primary faces (63) and electrical contacts (69) exposed and, optionally, further cured.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: September 16, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Owen R. Fay, Kevin R. Lish, Douglas G. Mitchell
  • Publication number: 20080182363
    Abstract: A method for forming a microelectronic assembly is provided. A carrier substrate (30) is provided. A sacrificial layer (38) is formed over the carrier substrate. A polymeric layer (40), including a polymeric tape (42) and a polymeric layer adhesive (44), is formed over the sacrificial layer. The polymeric layer adhesive is between the sacrificial layer and the polymeric tape. A microelectronic die (52), having an integrated circuit formed therein, is placed on the polymeric layer. The microelectronic die is encapsulated with an encapsulation material (54) to form an encapsulated structure (58). The polymeric layer and the encapsulated structure are separated from the carrier substrate. The separating of the polymeric layer and the encapsulated structure includes at least partially deteriorating the sacrificial layer.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Craig S. Amrine, Owen R. Fay, Lizabeth Ann Keser, Kevin R. Lish, William H. Lytle, Chandrasekaram Ramiah, Jerry L. White
  • Patent number: 7078796
    Abstract: The invention provides an integrated device with corrosion-resistant capped copper bond pads. The capped copper bond pads include at least one copper bond pad on a semiconductor substrate. An activation layer comprising one of immersion palladium, electroless cobalt, or immersion ruthernium is disposed on the copper bond pad. A first intermediate layer of electroless nickel-boron alloy is disposed on the activation layer. A second intermediate layer comprising one of electroless nickel or electroless palladium is disposed on the first intermediate layer, and an immersion gold layer is disposed on the second intermediate layer. A capped copper bond pad and a method of forming the capped copper bond pads are also disclosed.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: July 18, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gregory J. Dunn, Owen R. Fay, Timothy B. Dean, Terance Blake, Remy J. Chelini, William H. Lytle, George A. Strumberger
  • Patent number: 7015075
    Abstract: A process for encapsulating an integrated circuit die (403) using a porous carrier (101). In one example, an adhesive structure (e.g. tape) is applied to a porous carrier. Integrated circuit die is then placed on the adhesive structure. The integrated circuit die is then encapsulated to form an encapsulated structure (505). The carrier is then subjected to a solvent that passes through the carrier to reduce the adhesive strength of the adhesive structure for removal of the carrier from the encapsulated structure.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: March 21, 2006
    Assignee: Freescale Semiconuctor, Inc.
    Inventors: Owen R. Fay, Craig S. Amrine, Kevin R. Lish