Patents by Inventor Paolo Mutti

Paolo Mutti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6500255
    Abstract: A process for growing a single crystal silicon ingot having an axially symmetric region substantially free of agglomerated intrinsic point defects. The ingot is grown generally in accordance with the Czochralski method; however, the manner by which the ingot is cooled from the temperature of solidification to a temperature which is in excess of about 900° C. is controlled to allow for the diffusion of intrinsic point defects, such that agglomerated defects do not form in this axially symmetric region. Accordingly, the ratio v/G0 is allowed to vary axially within this region, due to changes in v or G0, between a minimum and maximum value by at least 5%.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: December 31, 2002
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Vladimir Voronkov, Paolo Mutti
  • Publication number: 20020170485
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region which is free of agglomerated intrinsic point defects, and a process for the preparation thereof. The process for growing the single crystal silicon ingot comprises controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Application
    Filed: April 30, 2002
    Publication date: November 21, 2002
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20020121238
    Abstract: A single crystal silicon wafer comprising a front surface, a back surface, a lateral surface joining the front and back surfaces, a central axis perpendicular to the front and back surfaces, and a segment which is axially symmetric about the central axis extending substantially from the front surface to the back surface in which crystal lattice vacancies are the predominant intrinsic point defect, the segment having a radial width of at least about 25% of the radius and containing agglomerated vacancy defects and a residual concentration of crystal lattice vacancies wherein (i) the agglomerated vacancy defects have a radius of less than about 70 nm and (ii) the residual concentration of crystal lattice vacancy intrinsic point defects is less than the threshold concentration at which uncontrolled oxygen precipitation occurs upon subjecting the wafer to an oxygen precipitation heat treatment.
    Type: Application
    Filed: January 2, 2002
    Publication date: September 5, 2002
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Vladimir V. Voronkov, Paolo Mutti, Fancesco Bonoli
  • Publication number: 20020078880
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region in which vacancies are the predominant intrinsic point defect and which is substantially free of agglomerated vacancy intrinsic point defects, wherein the first axially symmetric region has a width which is at least about 50% of the length of the radius of the ingot, and a process for the preparation thereof.
    Type: Application
    Filed: October 24, 2001
    Publication date: June 27, 2002
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6409826
    Abstract: The present invention relates a process for the preparation of single crystal silicon, which contains an axially symmetric region which is free of agglomerated intrinsic point defects. The process for growing the single crystal silicon including controlling the ratio v/G0, where v is the growth velocity and G0 is the average axial temperature gradient during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects. The control of V/G0 accomplished by controlling heat transfer at the melt/solid interface.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: June 25, 2002
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6379642
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region in which vacancies are the predominant intrinsic point defect and which is substantially free of agglomerated vacancy intrinsic point defects, wherein the first axially symmetric region has a width which is at least about 50% of the length of the radius of the ingot, and a process for the preparation thereof.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: April 30, 2002
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Publication number: 20020043206
    Abstract: A control method for use with a crystal puller for growing a monocrystalline semiconductor crystal from a melt according to the Czochralski process. The method includes defining an initial interval of time for observing growth of the crystal being pulled from the melt and determining diameter variations occurring during the interval. Based on the variations in the crystal diameter, the method defines a function r(t). By performing a best fit routine on the function r(t), the method deduces current values of crystal radius rf, meniscus height hf and growth rate Vgf at the end of the observation interval. The method also includes determining pull rate and heater power parameters as a function of the growth rate to control the crystal puller to minimize variations in both crystal diameter and growth rate during subsequent growth of the crystal.
    Type: Application
    Filed: November 13, 2001
    Publication date: April 18, 2002
    Applicant: MEMC Electronic Materials,Inc.
    Inventors: Paolo Mutti, Vladimir V. Voronkov
  • Patent number: 6312516
    Abstract: A process for growing a single crystal silicon ingot having an axially symmetric region substantially free of agglomerated intrinsic point defects. The ingot is grown generally in accordance with the Czochralski method; however, the manner by which the ingot is cooled from the temperature of solidification to a temperature which is in excess of about 900° C. is controlled to allow for the diffusion of intrinsic point defects, such that agglomerated defects do not form in this axially symmetric region. Accordingly, the ratio v/G0 is allowed to vary axially within this region, due to changes in v or G0, between a minimum and maximum value by at least 5%.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: November 6, 2001
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert J. Falster, Vladimir Voronkov, Paolo Mutti
  • Publication number: 20010027743
    Abstract: A process for growing a single crystal silicon ingot having an axially symmetric region substantially tree of agglomerated intrinsic point defects. The ingot is grown generally in accordance with the Czochralski method; however, the manner by which the ingot is cooled from the temperature of solidification to a temperature which is in excess of about 900° C. is controlled to allow for the diffusion of intrinsic point defects, Such that agglomerated defects do not form in this axially symmetric region. Accordingly, the ratio v/G0 is allowed to vary axially within this region, due to changes in v or G0, between a minimum and maximum value by at least 5%.
    Type: Application
    Filed: May 11, 2001
    Publication date: October 11, 2001
    Inventors: Robert J. Falster, Vladimir Voronkov, Paolo Mutti
  • Publication number: 20010025597
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region which is free of agglomerated intrinsic point defects, and a process for the preparation thereof. The process for growing the single crystal silicon ingot comprises controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Application
    Filed: March 23, 2001
    Publication date: October 4, 2001
    Inventors: Robert J. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6254672
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region which is free of agglomerated intrinsic point defects, and a process for the preparation thereof. The process for growing the single crystal silicon ingot comprises controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C., and (iii) a cooling rate of the crystal from a solidification temperature to about 1,050° C., in order to cause the formation of an axially symmetrical segment which is substantially free of agglomerated intrinsic point defects.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: July 3, 2001
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 6190631
    Abstract: A single crystal silicon wafer which, during the heat treatment cycles of essentially any electronic device manufacturing process, will form an ideal, non-uniform depth distribution of oxygen precipitates. The wafer is characterized in that is has a non-uniform distribution of crystal lattice vacancies, the concentration of vacancies in the bulk layer being greater than the concentration of vacancies in the surface layer and the vacancies having a concentration profile in which the peak density of the vacancies is at or near a central plane with the concentration generally decreasing from the position of peak density in the direction of a front surface of the wafer. In one embodiment, the wafer is further characterized in that it has a first axially symmetric region in which vacancies are the predominant intrinsic point defect and which is substantially free of agglomerated intrinsic point defects, wherein the first axially symmetric region comprises a central axis or has a width of at least about 15 mm.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: February 20, 2001
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Marco Cornara, Daniela Gambaro, Massimiliano Olmo, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson
  • Patent number: 5919302
    Abstract: The present invention relates to single crystal silicon, in ingot or wafer form, which contains an axially symmetric region in which vacancies are the predominant intrinsic point defect and which is substantially free of agglomerated vacancy intrinsic point defects, wherein the first axially symmetric region comprises the central axis or has a width of at least about 15 mm, and a process for the preparation thereof.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: July 6, 1999
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Robert A. Falster, Joseph C. Holzer, Steve A. Markgraf, Paolo Mutti, Seamus A. McQuaid, Bayard K. Johnson