Patents by Inventor Paras Ajay

Paras Ajay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230419010
    Abstract: Various embodiments of the present technology provide for the ultra-high density heterogenous integration, enabled by nano-precise pick-and-place assembly. For example, some embodiments provide for the integration of modular assembly techniques with the use of prefabricated blocks (PFBs). These PFBs can be created on one or more sources wafers. Then using pick-and-place technologies, the PFBs can be selectively arranged on a destination wafer thereby allowing Nanoscale-aligned 3D Stacked Integrated Circuit (N3-SI) and the Microscale Modular Assembled ASIC (M2A2) to be efficiently created. Some embodiments include systems and techniques for the construction of construct semiconductor devices which are arbitrarily larger than the standard photolithography field size of 26×33 mm, using pick-and-place assembly.
    Type: Application
    Filed: December 14, 2022
    Publication date: December 28, 2023
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Jaydeep Kulkarni
  • Publication number: 20230411178
    Abstract: A method and system for etching a semiconductor substrate using catalyst influenced chemical etching. A group of independently controlled discrete actuators are configured to control a depth of an etch of a material on a substrate, where at least two of the group of independently controlled discrete actuators has distinct actuation values. Furthermore, the etch depth has a variation of less than 10% of a feature height across the substrate.
    Type: Application
    Filed: October 29, 2021
    Publication date: December 21, 2023
    Inventors: Sidlgata V. Sreenivasan, Akhila Mallavarapu, Paras Ajay
  • Publication number: 20230285966
    Abstract: A diagnostic chip for detecting biomarkers and trace amounts of nanoparticles in chemical mixtures or in water. The diagnostic chip includes one or more inputs, where a sample containing differently sized particles is introduced into at least one of these inputs. Furthermore, the diagnostic chip includes multiple separation regions, where the sample is pressurized as it passes through the separation regions. Each separation region includes a deterministic lateral displacement array, where the deterministic lateral displacement array in two or more of these separation regions has a different etch depth profile. In this manner, the diagnostic chip effectively detects biomarkers and trace amounts of nanoparticles in chemical mixtures or in water.
    Type: Application
    Filed: July 29, 2021
    Publication date: September 14, 2023
    Inventors: Sidlgata V. Sreenivasan, Aryan Mehboudi, Akhila Mallavarapu, Paras Ajay, Raul Marcel Lema Galindo, Mark Hrdy
  • Publication number: 20230245996
    Abstract: A method for bonding with precision alignment. A first bonding surface is bonded with a second bonding surface, where features on the first and second bonding surfaces are precisely overlaid during the bonding. An etch is then performed on the first and/or second bonding surfaces to create recesses in the first and/or second bonding surfaces. Precision alignment of the first and second bonding surfaces is then enabled by a volatile fluid deployed between the first and second bonding surfaces, where the recesses enable removal of the volatile fluid from a bonding interface during and after the bonding.
    Type: Application
    Filed: April 7, 2023
    Publication date: August 3, 2023
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Akhila Mallavarapu, Crystal Barrera
  • Publication number: 20230230954
    Abstract: A system for assembling fields from a source substrate onto a second substrate. The source substrate includes fields. The system further includes a transfer chuck that is used to pick at least four of the fields from the source substrate in parallel to be transferred to the second substrate, where the relative positions of the at least four of the fields is predetermined.
    Type: Application
    Filed: March 28, 2022
    Publication date: July 20, 2023
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Akhila Mallavarapu, Crystal Barrera
  • Publication number: 20230187213
    Abstract: A method for fabricating silicon nanostructures. An etch uniformity improving layer is deposited on a substrate. A catalyst (e.g., thin film of Ti/Au) is deposited on the substrate or the etch uniformity improving layer, where the catalyst is contacting a portion of the substrate or the etch uniformity layer. The catalyst and the substrate or etch uniformity improving layer are exposed to an etchant, where the catalyst causes etching of the substrate thereby creating etched nanostructures.
    Type: Application
    Filed: May 5, 2021
    Publication date: June 15, 2023
    Inventors: Sidlgata V. Sreenivasan, Akhila Mallavarapu, Paras Ajay, Mariana Castaneda, Crystal Barrera
  • Patent number: 11669009
    Abstract: A method for fabricating patterns on a flexible substrate in a roll-to-roll configuration. Drops of a monomer diluted in a solvent are dispensed on a substrate, where the drops spontaneously spread and merge with one another to form a liquid resist formulation. The solvent is evaporated (e.g., blanket evaporation) from the liquid resist formulation followed by selective multi-component resist film evaporation resulting in a non-uniform and substantially continuous film on the substrate. The gap between the film on the substrate and a template is closed such that the film fills the features of the template. After cross-linking the film to polymerize the film, the template is separated from the substrate thereby leaving the polymerized film on the substrate.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: June 6, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Paras Ajay, Ofodike Ezekoye
  • Publication number: 20230118578
    Abstract: Various embodiments of the present technology provide for the ultra-high density heterogenous integration, enabled by nano-precise pick-and-place assembly. For example, some embodiments provide for the integration of modular assembly techniques with the use of prefabricated blocks (PFBs). These PFBs can be created on one or more sources wafers. Then using pick-and-place technologies, the PFBs can be selectively arranged on a destination wafer thereby allowing Nanoscale-aligned 3D Stacked Integrated Circuit (N3-SI) and the Microscale Modular Assembled ASIC (M2A2) to be efficiently created. Some embodiments include systems and techniques for the construction of construct semiconductor devices which are arbitrarily larger than the standard photolithography field size of 26×33 mm, using pick-and-place assembly.
    Type: Application
    Filed: December 14, 2022
    Publication date: April 20, 2023
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Jaydeep Kulkarni
  • Publication number: 20230124676
    Abstract: Various embodiments of the present technology provide for the ultra-high density heterogenous integration, enabled by nano-precise pick-and-place assembly. For example, some embodiments provide for the integration of modular assembly techniques with the use of prefabricated blocks (PFBs). These PFBs can be created on one or more sources wafers. Then using pick-and-place technologies, the PFBs can be selectively arranged on a destination wafer thereby allowing Nanoscale-aligned 3D Stacked Integrated Circuit (N3-SI) and the Microscale Modular Assembled ASIC (M2A2) to be efficiently created. Some embodiments include systems and techniques for the construction of construct semiconductor devices which are arbitrarily larger than the standard photolithography field size of 26×33 mm, using pick-and-place assembly.
    Type: Application
    Filed: December 14, 2022
    Publication date: April 20, 2023
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Jaydeep Kulkarni
  • Publication number: 20230116581
    Abstract: A method for fabricating a three-dimensional (3D) stacked integrated circuit. Pick-and-place strategies are used to stack the source wafers with device layers fabricated using standard two-dimensional (2D) semiconductor fabrication technologies. The source wafers may be stacked in either a sequential or parallel fashion. The stacking may be in a face-to-face, face-to-back, back-to-face or back-to-back fashion. The source wafers that are stacked in a face-to-back, back-to-face or back-to-back fashion may be connected using Through Silicon Vias (TSVs). Alternatively, source wafers that are stacked in a face-to-face fashion may be connected using Inter Layer Vias (ILVs).
    Type: Application
    Filed: December 14, 2022
    Publication date: April 13, 2023
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Ovadia Abed, Mark McDermott, Jaydeep Kulkarni, Shrawan Singhal
  • Patent number: 11600525
    Abstract: A method for fabricating a three-dimensional (3D) stacked integrated circuit. Pick-and-place strategies are used to stack the source wafers with device layers fabricated using standard two-dimensional (2D) semiconductor fabrication technologies. The source wafers may be stacked in either a sequential or parallel fashion. The stacking may be in a face-to-face, face-to-back, back-to-face or back-to-back fashion. The source wafers that are stacked in a face-to-back, back-to-face or back-to-back fashion may be connected using Through Silicon Vias (TSVs). Alternatively, source wafers that are stacked in a face-to-face fashion may be connected using Inter Layer Vias (ILVs).
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: March 7, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Ovadia Abed, Mark McDermott, Jaydeep Kulkarni, Shrawan Singhal
  • Publication number: 20230042873
    Abstract: A method for assembling heterogeneous components. The assembly process includes using a vacuum based pickup mechanism in conjunction with sub-nm precise moiré alignment techniques resulting in highly accurate, parallel assembly of feedstocks.
    Type: Application
    Filed: October 4, 2022
    Publication date: February 9, 2023
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Vipul Goyal, Michael Cullinan
  • Patent number: 11469131
    Abstract: A method for assembling heterogeneous components. The assembly process includes using a vacuum based pickup mechanism in conjunction with sub-nm precise more alignment techniques resulting in highly accurate, parallel assembly of feedstocks.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: October 11, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Vipul Goyal, Michael Cullinan
  • Publication number: 20220229361
    Abstract: A method and system for configuring ultraviolet (UV)-based nanoimprint lithography (NIL) for roll-to-roll (R2R) processing, which combines the benefits of inexpensive R2R processing with the precise nanoscale patterning afforded by NIL. Furthermore, an R2R fabrication process is used to create nanoscale copper (Cu) metal mesh electrodes on flexible polycarbonate substrates and rigid quartz substrates employing jet-and-flash nanoimprint lithography (J-FIL), linear ion source etching (LIS) and selective electroless Cu metallization (ECu) using a palladium (Pd) seed layer.
    Type: Application
    Filed: May 13, 2020
    Publication date: July 21, 2022
    Inventors: Sidlgata V. Sreenivasan, Parth Pandya, Shrawan Singhal, Paras Ajay, Ziam Ghaznavi, Ovadia Abed, Michael Watts
  • Publication number: 20220139717
    Abstract: Various embodiments of the present technology generally relate to semiconductor device architectures and manufacturing techniques. More specifically, some embodiments of the present technology relate to large area metrology and process control for anisotropic chemical etching. Catalyst influenced chemical etching (CICE) can be used to create high aspect ratio semiconductor structures with dimensions in the nanometer to millimeter scale with anisotropic and smooth sidewalls. However, all aspects of the CICE process must be compatible with the equipment used in semiconductor fabrication facilities today, and they must be scalable to enable wafer scale processing with high yield and reliability. This invention relates to metrology and control of etch and CMOS compatible methods of patterning the catalyst and removing it without damaging the etched structures.
    Type: Application
    Filed: February 24, 2020
    Publication date: May 5, 2022
    Inventors: Sidlgata V. Sreenivasan, Akhila Mallavarapu, John G. Ekerdt, Michelle A. Grigas, Ziam Ghaznavi, Paras Ajay
  • Publication number: 20210366771
    Abstract: A method for fabricating a three-dimensional (3D) stacked integrated circuit. Pick-and-place strategies are used to stack the source wafers with device layers fabricated using standard two-dimensional (2D) semiconductor fabrication technologies. The source wafers may be stacked in either a sequential or parallel fashion. The stacking may be in a face-to-face, face-to-back, back-to-face or back-to-back fashion. The source wafers that are stacked in a face-to-back, back-to-face or back-to-back fashion may be connected using Through Silicon Vias (TSVs). Alternatively, source wafers that are stacked in a face-to-face fashion may be connected using Inter Layer Vias (ILVs).
    Type: Application
    Filed: December 21, 2018
    Publication date: November 25, 2021
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Ovadia Abed, Mark McDermott, Jaydeep Kulkarni, Shrawan Singhal
  • Publication number: 20210350061
    Abstract: Various embodiments of the present technology provide for the ultra-high density heterogenous integration, enabled by nano-precise pick-and-place assembly. For example, some embodiments provide for the integration of modular assembly techniques with the use of prefabricated blocks (PFBs). These PFBs can be created on one or more sources wafers. Then using pick-and-place technologies, the PFBs can be selectively arranged on a destination wafer thereby allowing Nanoscale-aligned 3D Stacked Integrated Circuit (N3-SI) and the Microscale Modular Assembled ASIC (M2A2) to be efficiently created. Some embodiments include systems and techniques for the construction of construct semiconductor devices which are arbitrarily larger than the standard photolithography field size of 26×33 mm, using pick-and-place assembly.
    Type: Application
    Filed: September 6, 2019
    Publication date: November 11, 2021
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Jaydeep Kulkarni
  • Publication number: 20210341833
    Abstract: A method for fabricating patterns on a flexible substrate in a roll-to-roll configuration. Drops of a monomer diluted in a solvent are dispensed on a substrate, where the drops spontaneously spread and merge with one another to form a liquid resist formulation. The solvent is evaporated (e.g., blanket evaporation) from the liquid resist formulation followed by selective multi-component resist film evaporation resulting in a non-uniform and substantially continuous film on the substrate. The gap between the film on the substrate and a template is closed such that the film fills the features of the template. After cross-linking the film to polymerize the film, the template is separated from the substrate thereby leaving the polymerized film on the substrate.
    Type: Application
    Filed: August 3, 2017
    Publication date: November 4, 2021
    Inventors: Sidlgata V. Sreenivasan, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Paras Ajay, Ofodike Ezekoye
  • Publication number: 20210134640
    Abstract: A method for assembling heterogeneous components. The assembly process includes using a vacuum based pickup mechanism in conjunction with sub-nm precise more alignment techniques resulting in highly accurate, parallel assembly of feedstocks.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 6, 2021
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Vipul Goyal, Michael Cullinan
  • Patent number: 10191368
    Abstract: Techniques for delivering sub-5 nm overlay control over multiple fields. One such technique reduces overlay from the wafer side using wafer-thermal actuators. In another technique, the topology of the template is optimized so that the inter-field mechanical coupling between fields in the multi-field template is reduced thereby allowing overlay to be simultaneously reduced in multiple fields in the template. A further technique combines the wafer-thermal and template actuation techniques to achieve significantly improved single and multi-field overlay performance.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: January 29, 2019
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Anshuman Cherala