Patents by Inventor Paras Ajay

Paras Ajay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9972698
    Abstract: Methods for fabricating and replicating self-aligned multi-tier nanoscale structures for a variety of cross-sectional geometries. These methods can utilize a single lithography step whereby the need for alignment and overlay in the process is completely eliminated thereby enabling near-zero overlay error. Furthermore, techniques are developed to use these methods to fabricate self-aligned nanoscale multi-level/multi-height patterns with various shapes for master templates, replica templates and nanoimprint based pattern replication. Furthermore, the templates can be used to pattern multiple levels in a sacrificial polymer resist and achieve pattern transfer of the levels into a variety of substrates to form completed large area nanoelectronic and nanophotonic devices using only one patterning step.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: May 15, 2018
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Praveen Joseph, Ovadia Abed, Michelle Grigas, Akhila Mallavarapu, Paras Ajay
  • Patent number: 9972699
    Abstract: Methods for fabricating and replicating self-aligned multi-tier nanoscale structures for a variety of cross-sectional geometries. These methods can utilize a single lithography step whereby the need for alignment and overlay in the process is completely eliminated thereby enabling near-zero overlay error. Furthermore, techniques are developed to use these methods to fabricate self-aligned nanoscale multi-level/multi-height patterns with various shapes for master templates, replica templates and nanoimprint based pattern replication. Furthermore, the templates can be used to pattern multiple levels in a sacrificial polymer resist and achieve pattern transfer of the levels into a variety of substrates to form completed large area nanoelectronic and nanophotonic devices using only one patterning step.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: May 15, 2018
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Praveen Joseph, Ovadia Abed, Michelle Grigas, Akhila Mallavarapu, Paras Ajay
  • Patent number: 9941389
    Abstract: Methods for fabricating and replicating self-aligned multi-tier nanoscale structures for a variety of cross-sectional geometries. These methods can utilize a single lithography step whereby the need for alignment and overlay in the process is completely eliminated thereby enabling near-zero overlay error. Furthermore, techniques are developed to use these methods to fabricate self-aligned nanoscale multi-level/multi-height patterns with various shapes for master templates, replica templates and nanoimprint based pattern replication. Furthermore, the templates can be used to pattern multiple levels in a sacrificial polymer resist and achieve pattern transfer of the levels into a variety of substrates to form completed large area nanoelectronic and nanophotonic devices using only one patterning step.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: April 10, 2018
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Praveen Joseph, Ovadia Abed, Michelle Grigas, Akhila Mallavarapu, Paras Ajay
  • Publication number: 20170131640
    Abstract: Techniques for delivering sub-5 nm overlay control over multiple fields. One such technique reduces overlay from the wafer side using wafer-thermal actuators. In another technique, the topology of the template is optimized so that the inter-field mechanical coupling between fields in the multi-field template is reduced thereby allowing overlay to be simultaneously reduced in multiple fields in the template. A further technique combines the wafer-thermal and template actuation techniques to achieve significantly improved single and multi-field overlay performance.
    Type: Application
    Filed: November 4, 2016
    Publication date: May 11, 2017
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Anshuman Cherala
  • Publication number: 20160307790
    Abstract: A pin mechanism and a method for reducing backside particle induced out-of-plane distortions in semiconductor wafers involving such pin mechanisms. Geometric parameters of the pin are optimized so as to maximize the height of a particle trapped between a backside of the wafer and one of the contact lands without exceeding a selected maximum out-of-plane distortion. These geometric parameters are optimized in various designs of the pin mechanism, such as a pin mechanism that includes secondary leaf-type flexures attached to the contact lands and a single stem attached to a base portion of a cross-member of the pin. An alternative pin mechanism includes notch-type flexures, as opposed to secondary leaf-type flexures, connected to the cross-member of the pin. Furthermore, a plurality of stems are attached to the base portion of the cross-member of the pin. Alternatively, such a pin mechanism may utilize a different number of stems (e.g., one stem).
    Type: Application
    Filed: April 20, 2016
    Publication date: October 20, 2016
    Inventors: Sidlgata V. Sreenivasan, Andrew Westfahl, Paras Ajay
  • Publication number: 20160308020
    Abstract: Methods for fabricating and replicating self-aligned multi-tier nanoscale structures for a variety of cross-sectional geometries. These methods can utilize a single lithography step whereby the need for alignment and overlay in the process is completely eliminated thereby enabling near-zero overlay error. Furthermore, techniques are developed to use these methods to fabricate self-aligned nanoscale multi-level/multi-height patterns with various shapes for master templates, replica templates and nanoimprint based pattern replication. Furthermore, the templates can be used to pattern multiple levels in a sacrificial polymer resist and achieve pattern transfer of the levels into a variety of substrates to form completed large area nanoelectronic and nanophotonic devices using only one patterning step.
    Type: Application
    Filed: April 19, 2016
    Publication date: October 20, 2016
    Inventors: Sidlgata V. Sreenivasan, Praveen Joseph, Ovadia Abed, Michelle Grigas, Akhila Mallavarapu, Paras Ajay