Patents by Inventor Partha Nandi

Partha Nandi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10995352
    Abstract: The present disclosure relates to glycolipid compositions, methods for making glycolipid compositions, and their uses thereof. Glycolipid compositions can be prepared via yeast-mediated catalyzed reaction, and exhibit excellent surfactant properties having high corrosion inhibition performance, good reducing surface tension efficiency. Processes of the present disclosure can provide glycolipid compositions having one or more of: a ratio of lactonic glycolipids to glycolipid acylic esters is from about 1:10 to about 10:1, a molecular weight of from about 400 g/mol to about 10,000 g/mol, a corrosion rate of carbon steel from about 0.5 MPY to about 100 MPY at room temperature and at pH 4-6. Furthermore, aqueous solutions of the glycolipid compositions of the present disclosure can have a surface tension of from about 20 mN/m to about 80 mN/m.
    Type: Grant
    Filed: May 9, 2020
    Date of Patent: May 4, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Partha Nandi, Xiaozhou Zhang, Mohor Chatterjee, Vera Grankina, Changyub Paek, Fang Cao
  • Publication number: 20210108235
    Abstract: Hydroxycarboxylic acids may be biosynthesized from a carbonaceous feedstock and then isolated through forming and subsequently hydrolyzing an intermediate sophorolipid. After biosynthesizing a hydroxycarboxylic acid in a cell culture medium or otherwise providing a hydroxycarboxylic acid in a first aqueous medium, the hydroxycarboxylic acid and glucose may be converted into at least one sophorolipid by a suitable microorganism or an enzyme cocktail. The at least one sophorolipid may be then be separated from the cell culture medium or first aqueous medium and then hydrolyzed in a second aqueous medium to form the hydroxycarboxylic acid and glucose as free components separate from the cell culture medium or first aqueous medium. The hydroxycarboxylic acid is present as a phase separate from the second aqueous medium and the glucose remains in the second aqueous medium.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Inventors: Xiaozhou Zhang, Zarath M Summers, Partha Nandi, Mark P Hagemeister, Jihad M Dakka, Mohor Chatterjee, Vera Grankina
  • Patent number: 10974962
    Abstract: A method for producing a metal nitride and/or a metal carbide, a metal nitride and/or metal carbide optionally produced according to the method, and the use of the metal nitride and/or carbide in catalysis optionally catalytic hydroprocessing. Optionally, the method comprises: i) contacting at least one metal oxide comprising at least one first metal M1 with a cyanometallate comprising at least one second metal M2 to form a reaction mixture; and, ii) subjecting the reaction mixture to a temperature of at least 300° C. for a reaction period. Optionally, the metal nitride and/or metal carbide is a metal nitride comprising tungsten nitride.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 13, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Partha Nandi, Quddus A. Nizami, Christine E. Kliewer, Andrew J. Stella, Jihad M. Dakka, Himanshu Gupta
  • Publication number: 20200377916
    Abstract: The present disclosure relates to glycolipid compositions, methods for making glycolipid compositions, and their uses thereof. Glycolipid compositions can be prepared via yeast-mediated catalyzed reaction, and exhibit excellent surfactant properties having high corrosion inhibition performance, good reducing surface tension efficiency. Processes of the present disclosure can provide glycolipid compositions having one or more of: a ratio of lactonic glycolipids to glycolipid acylic esters is from about 1:10 to about 10:1, a molecular weight of from about 400 g/mol to about 10,000 g/mol, a corrosion rate of carbon steel from about 0.5 MPY to about 100 MPY at room temperature and at pH 4-6. Furthermore, aqueous solutions of the glycolipid compositions of the present disclosure can have a surface tension of from about 20 mN/m to about 80 mN/m.
    Type: Application
    Filed: May 9, 2020
    Publication date: December 3, 2020
    Inventors: Partha Nandi, Xiaozhou Zhang, Mohor Chatterjee, Vera Grankina, Changyub Paek, Fang Cao
  • Patent number: 10851036
    Abstract: Systems and methods are provided for direct methane conversion to methanol. The methods can include exposing methane to an oxidant, such as O2, in a solvent at conditions that are substantially supercritical for the solvent while having a temperature of about 310° C. or less, or about 300° C. or less, or about 290° C. or less. The solvent can correspond to an electron donor solvent that, when in a supercritical state, can complex with O2. By forming a complex with the O2, the supercritical electron donor solvent can facilitate conversion of methane to methanol at short residence times while reducing or minimizing further oxidation of the methanol to other products.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 1, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Partha Nandi, Steven L. Suib, Sumathy Raman
  • Patent number: 10639619
    Abstract: Catalyst compositions with improved alkylation activity and corresponding methods for making such catalyst compositions are provided. The catalyst(s) correspond to solid acid catalysts formed by exposing a catalyst precursor with a zeolitic framework structure to a molten metal salt that includes fluorine, such as a molten metal fluoride. The resulting fluorinated solid acid catalysts can have improved alkylation activity while having a reduced or minimized amount of structural change due to the exposure to the molten metal fluoride. This is in contrast to fluorinated solid acid catalysts that are exposed to higher severity forms of fluorination, such as exposure to ammonium fluoride or HF. SnF2 is an example of a suitable molten metal fluoride.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: May 5, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Partha Nandi, Matthew S. Ide, Jihad M. Dakka, Quddus A. Nizami, Mobae Afeworki
  • Patent number: 10513475
    Abstract: Methods and systems for converting hydrocarbons including exposing a portion of a hydroperoxide-containing feed including tert-butyl hydroperoxide to a solid deperoxidation catalyst under decomposition conditions to form an oxidation effluent comprising tert-butyl alcohol, wherein the solid deperoxidation catalyst comprises a manganese oxide octahedral molecular sieve, are provided herein. Further methods and systems for converting the oxidation effluent to an alkylation product are also provided herein.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: December 24, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Sophie Liu, Jihad M. Dakka, Partha Nandi, Sara Yacob, Quddus A. Nizami, Chuansheng Bai
  • Publication number: 20190284051
    Abstract: A method for producing a metal nitride and/or a metal carbide, a metal nitride and/or metal carbide optionally produced according to the method, and the use of the metal nitride and/or carbide in catalysis optionally catalytic hydroprocessing. Optionally, the method comprises: i) contacting at least one metal oxide comprising at least one first metal M1 with a cyanometallate comprising at least one second metal M2 to form a reaction mixture; and, ii) subjecting the reaction mixture to a temperature of at least 300° C. for a reaction period. Optionally, the metal nitride and/or metal carbide is a metal nitride comprising tungsten nitride.
    Type: Application
    Filed: September 12, 2017
    Publication date: September 19, 2019
    Inventors: Partha Nandi, Guddus A. Nizami, Christine E. Klievver, Andrew J. Stella, Jihad M. Dakka, Himanshu Gupta
  • Publication number: 20190185397
    Abstract: Systems and methods are provided for direct methane conversion to methanol. The methods can include exposing methane to an oxidant, such as O2, in a solvent at conditions that are substantially supercritical for the solvent while having a temperature of about 310° C. or less, or about 300° C. or less, or about 290° C. or less. The solvent can correspond to an electron donor solvent that, when in a supercritical state, can complex with O2. By forming a complex with the O2, the supercritical electron donor solvent can facilitate conversion of methane to methanol at short residence times while reducing or minimizing further oxidation of the methanol to other products.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 20, 2019
    Inventors: Partha NANDI, Steven L. SUIB, Sumathy RAMAN
  • Publication number: 20190022631
    Abstract: Catalyst compositions with improved alkylation activity and corresponding methods for making such catalyst compositions are provided. The catalyst(s) correspond to solid acid catalysts formed by exposing a catalyst precursor with a zeolitic framework structure to a molten metal salt that includes fluorine, such as a molten metal fluoride. The resulting fluorinated solid acid catalysts can have improved alkylation activity while having a reduced or minimized amount of structural change due to the exposure to the molten metal fluoride. This is in contrast to fluorinated solid acid catalysts that are exposed to higher severity forms of fluorination, such as exposure to ammonium fluoride or HF. SnF2 is an example of a suitable molten metal fluoride.
    Type: Application
    Filed: June 26, 2018
    Publication date: January 24, 2019
    Inventors: Partha Nandi, Matthew S. Ide, Jihad M. Dakka, Quddus A. Nizami, Mobae Afeworki
  • Patent number: 10138197
    Abstract: This disclosure describes a new route to acrylate esters via direct catalytic partial oxidation of allyl ether using heterogeneous manganese oxide catalysts. The method involves forming allyl acrylate by contacting allyl ether, where the allyl ether is in solution with a solvent, with one or more oxidants in the presence of a mesoporous manganese oxide (MnOx) catalyst. Oxygen or peroxide can be used as the oxidant. The yield of and selectivity for acrylate ester can be very high, and process efficiency is improved over current processes.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: November 27, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Partha Nandi, Steven L. Suib, Timothy D. Shaffer
  • Publication number: 20180264450
    Abstract: The precursor of a hydroprocessing catalyst is made by impregnating a metal oxide component comprising at least one metal from Group 6 of the Periodic Table and at least one metal from Groups 8-10 of the Periodic Table with an amide formed from a first organic compound containing at least one amine group, and a second organic compound containing at least one carboxylic acid group. Following impregnation heat treatment follows to form in situ generated unsaturation additional to that in the two organic compounds. The catalyst precursor is sulfided to form an active, sulfide hydroprocessing catalyst.
    Type: Application
    Filed: April 27, 2018
    Publication date: September 20, 2018
    Inventors: STUART L. SOLED, SABATO MISEO, JOSEPH E. BAUMGARTNER, IULIAN NISTOR, PARTHA NANDI, JAVIER GUZMAN, DORON LEVIN, Keith Wilson, JACOB ARIE BERGWERFF, RONALD HUIBERTS, ARNOLD VAN LOEVEZIJN
  • Publication number: 20180258023
    Abstract: A process for forming allyl acrylate, comprising contacting allyl ether in solution with a solvent with one or more oxidants in the presence of a mesoporous manganese oxide (MnOx) catalyst.
    Type: Application
    Filed: February 26, 2018
    Publication date: September 13, 2018
    Inventors: Partha NANDI, Steven L. SUIB, Timothy D. SHAFFER
  • Patent number: 10022712
    Abstract: The precursor of a hydroprocessing catalyst is made by impregnating a metal oxide component comprising at least one metal from Group 6 of the Periodic Table and at least one metal from Groups 8-10 of the Periodic Table with an amide formed from a first organic compound containing at least one amine group, and a second organic compound containing at least one carboxylic acid group. Following impregnation heat treatment follows to form in situ generated unsaturation additional to that in the two organic compounds. The catalyst precursor is sulfided to form an active, sulfide hydroprocessing catalyst.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: July 17, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Iulian Nistor, Partha Nandi, Javier Guzman, Doron Levin, Keith Wilson, Jacob Arie Bergweff, Ronald Jan Huiberts, Arnold Van Loevezijn
  • Publication number: 20180162789
    Abstract: Methods and systems for converting hydrocarbons including exposing a portion of a hydroperoxide-containing feed including tert-butyl hydroperoxide to a solid deperoxidation catalyst under decomposition conditions to form an oxidation effluent comprising tert-butyl alcohol, wherein the solid deperoxidation catalyst comprises a manganese oxide octahedral molecular sieve, are provided herein. Further methods and systems for converting the oxidation effluent to an alkylation product are also provided herein.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 14, 2018
    Inventors: Sophie LIU, Jihad M. DAKKA, Partha NANDI, Sara YACOB, Quddus A. NIZAMI, Chuansheng BAI
  • Patent number: 9295983
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: March 29, 2016
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CHEVRON U.S.A. INC.
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
  • Publication number: 20160031920
    Abstract: An imidazolate framework material comprises a general structure, M1-IM-M2, wherein IM is an imidazolate or a substituted imidazolate linking moiety, such as a 4,5-dicyanoimidazolate or a hydrolyzed or substituted 4,5 dicyanoimidazolate linking moiety, wherein M1 and M2 comprise the same or different metal cations, wherein at least one of M1 and M2 comprises a trivalent metal cation and wherein neither M1 nor M2 comprises a monovalent cation.
    Type: Application
    Filed: June 11, 2015
    Publication date: February 4, 2016
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Partha Nandi, Mobae Afeworki, Quddus Nizami, Simon C. Weston
  • Publication number: 20150238949
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Application
    Filed: December 23, 2014
    Publication date: August 27, 2015
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
  • Publication number: 20150167588
    Abstract: Catalyst compositions suitable for use in the exhaust gas recycle stream of an internal combustion engine are provided. Such catalyst compositions typically provide significant amounts of methane in addition to syngas. A reformer incorporating such a catalyst for use in an exhaust gas recycle portion of an internal combustion engine powertrain is described. A powertrain incorporating such a reformer, a method of increasing the octane rating of an exhaust gas recycle stream, and and a method of operating an internal combustion engine using methane-assisted combustion are also described.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 18, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Tilman Wolfram Beutel, Brian Michael Weiss, Karl Gottlieb Strohmaier, Michael Anthony Marella, Keith Robert Hajkowski, Walter Weissman, Eugine Choi, George Skic, Chris Esther Kliewer, John Francis Brody, Paul Dmitri Madiara, Sumathy Raman, Partha Nandi
  • Patent number: 8969607
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: March 3, 2015
    Assignees: The Regents of the University of California, Chevron U.S.A., Inc.
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin