Patents by Inventor Partha Nandi

Partha Nandi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10022712
    Abstract: The precursor of a hydroprocessing catalyst is made by impregnating a metal oxide component comprising at least one metal from Group 6 of the Periodic Table and at least one metal from Groups 8-10 of the Periodic Table with an amide formed from a first organic compound containing at least one amine group, and a second organic compound containing at least one carboxylic acid group. Following impregnation heat treatment follows to form in situ generated unsaturation additional to that in the two organic compounds. The catalyst precursor is sulfided to form an active, sulfide hydroprocessing catalyst.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: July 17, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Iulian Nistor, Partha Nandi, Javier Guzman, Doron Levin, Keith Wilson, Jacob Arie Bergweff, Ronald Jan Huiberts, Arnold Van Loevezijn
  • Publication number: 20180162789
    Abstract: Methods and systems for converting hydrocarbons including exposing a portion of a hydroperoxide-containing feed including tert-butyl hydroperoxide to a solid deperoxidation catalyst under decomposition conditions to form an oxidation effluent comprising tert-butyl alcohol, wherein the solid deperoxidation catalyst comprises a manganese oxide octahedral molecular sieve, are provided herein. Further methods and systems for converting the oxidation effluent to an alkylation product are also provided herein.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 14, 2018
    Inventors: Sophie LIU, Jihad M. DAKKA, Partha NANDI, Sara YACOB, Quddus A. NIZAMI, Chuansheng BAI
  • Patent number: 9295983
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: March 29, 2016
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CHEVRON U.S.A. INC.
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
  • Publication number: 20160031920
    Abstract: An imidazolate framework material comprises a general structure, M1-IM-M2, wherein IM is an imidazolate or a substituted imidazolate linking moiety, such as a 4,5-dicyanoimidazolate or a hydrolyzed or substituted 4,5 dicyanoimidazolate linking moiety, wherein M1 and M2 comprise the same or different metal cations, wherein at least one of M1 and M2 comprises a trivalent metal cation and wherein neither M1 nor M2 comprises a monovalent cation.
    Type: Application
    Filed: June 11, 2015
    Publication date: February 4, 2016
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Partha Nandi, Mobae Afeworki, Quddus Nizami, Simon C. Weston
  • Publication number: 20150238949
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Application
    Filed: December 23, 2014
    Publication date: August 27, 2015
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
  • Publication number: 20150167588
    Abstract: Catalyst compositions suitable for use in the exhaust gas recycle stream of an internal combustion engine are provided. Such catalyst compositions typically provide significant amounts of methane in addition to syngas. A reformer incorporating such a catalyst for use in an exhaust gas recycle portion of an internal combustion engine powertrain is described. A powertrain incorporating such a reformer, a method of increasing the octane rating of an exhaust gas recycle stream, and and a method of operating an internal combustion engine using methane-assisted combustion are also described.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 18, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Tilman Wolfram Beutel, Brian Michael Weiss, Karl Gottlieb Strohmaier, Michael Anthony Marella, Keith Robert Hajkowski, Walter Weissman, Eugine Choi, George Skic, Chris Esther Kliewer, John Francis Brody, Paul Dmitri Madiara, Sumathy Raman, Partha Nandi
  • Patent number: 8969607
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: March 3, 2015
    Assignees: The Regents of the University of California, Chevron U.S.A., Inc.
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
  • Publication number: 20140374319
    Abstract: The precursor of a hydroprocessing catalyst is made by impregnating a metal oxide component comprising at least one metal from Group 6 of the Periodic Table and at least one metal from Groups 8-10 of the Periodic Table with an amide formed from a first organic compound containing at least one amine group, and a second organic compound containing at least one carboxylic acid group. Following impregnation heat treatment follows to form in situ generated unsaturation additional to that in the two organic compounds. The catalyst precursor is sulfided to form an active, sulfide hydroprocessing catalyst.
    Type: Application
    Filed: May 5, 2014
    Publication date: December 25, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Iulian Nistor, Partha Nandi, Javier Guzman, Doron Levin, Keith Wilson, Jacob Arie Bergweff, Ronald Jan Huiberts, Arnold Van Loevezijn
  • Publication number: 20140306153
    Abstract: The invention relates to lithium reagent-porous metal oxide compositions having RLi absorbed into a porous oxide. In formula RLi, R is an alkyl group, an alkenyl group, an alkyny group, an aryl group, an alkaryl group, or an NR1R2 group; R1 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkaryl group; and R2 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and an alkaryl group. The preparation and use of lithium reagent-porous metal oxide compositions having RLi absorbed into a porous oxide compositions are also described.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 16, 2014
    Applicants: SIGNA CHEMISTRY, INC., BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Michael LEFENFELD, James L. DYE, Partha NANDI, James JACKSON
  • Publication number: 20130018199
    Abstract: The invention provides complexes in which a calixarene-related compound is coordinated to an iridium-containing metal colloid. The complexes can be immobilized on a substrate. The complexes of the invention are useful as tunable and highly robust isolated metal colloids that find use in binding of molecules and catalysis of chemical reactions.
    Type: Application
    Filed: October 22, 2010
    Publication date: January 17, 2013
    Inventors: Alexander Katz, Namal De Silva, Andrew Solovyov, Alexander Kuperman, Cong-Yan Chen, Partha Nandi, Alexander Okrut, Igor Busygin
  • Publication number: 20120235084
    Abstract: The invention relates to lithium metal/porous metal oxide compositions. These lithium metal compositions are prepared by mixing liquid lithium metal with a porous metal oxide in an inert atmosphere under exothermic conditions sufficient to absorb the liquid lithium metal into the porous metal oxide pores. The lithium metal/porous metal oxide compositions of the invention are preferably loaded with lithium metal up to about 40% by weight, with about 20% to 40% by weight being the most preferred loading. The invention also relates to lithium reagent-porous metal oxide compositions having RLi absorbed into a porous oxide. In formula RLi, R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkaryl group, or an NR1R2 group; R1 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkaryl group; and R2 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and an alkaryl group. The preparation and use of these compositions are also described.
    Type: Application
    Filed: May 11, 2012
    Publication date: September 20, 2012
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Michael LEFENFELD, James L. DYE, Partha NANDI, James JACKSON
  • Patent number: 8263808
    Abstract: The invention relates to a method for removing an alkyl sulfonyl or aryl sulfonyl protecting group from a primary or secondary amine by contacting an alkyl sulfonamide or an aryl sulfonamide with a Stage 0 or Stage I alkali metal-silica gel material in the presence of a solid proton source under conditions sufficient to form the corresponding amine. The invention also relates to a method for removing an alkyl sulfonyl or aryl sulfonyl protecting group from a primary or secondary amine by a) reacting an alkyl sulfonamide or an aryl sulfonamide with a Stage 0 or Stage I alkali metal-silica gel material, and b) subsequently reacting the reaction product from step a) with an electrophile or a proton source. Preferred Stage 0 or Stage I alkali metal-silica gel materials include Na, K2Na, and Na2K.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: September 11, 2012
    Assignee: SiGNa Chemistry, Inc.
    Inventors: Michael Lefenfeld, James L. Dye, Partha Nandi, James Jackson
  • Patent number: 8197707
    Abstract: The invention relates to lithium metal/porous metal oxide compositions. These lithium metal compositions are prepared by mixing liquid lithium metal with a porous metal oxide in an inert atmosphere under exothermic conditions sufficient to absorb the liquid lithium metal into the porous metal oxide pores. The lithium metal/porous metal oxide compositions of the invention are preferably loaded with lithium metal up to about 40% by weight, with about 20% to 40% by weight being the most preferred loading. The invention also relates to lithium reagent-porous metal oxide compositions having RLi absorbed into a porous oxide. The preparation and use of these compositions are also described.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: June 12, 2012
    Assignee: Signa Chemistry LLC
    Inventors: Michael Lefenfeld, James L. Dye, Partha Nandi, James Jackson
  • Publication number: 20090306391
    Abstract: The invention relates to a method for removing an alkyl sulfonyl or aryl sulfonyl protecting group from a primary or secondary amine by contacting an alkyl sulfonamide or an aryl sulfonamide with a Stage 0 or Stage I alkali metal-silica gel material in the presence of a solid proton source under conditions sufficient to form the corresponding amine. The invention also relates to a method for removing an alkyl sulfonyl or aryl sulfonyl protecting group from a primary or secondary amine by a) reacting an alkyl sulfonamide or an aryl sulfonamide with a Stage 0 or Stage I alkali metal-silica gel material, and b) subsequently reacting the reaction product from step a) with an electrophile or a proton source. Preferred Stage 0 or Stage I alkali metal-silica gel materials include Na, K2Na, and Na2K.
    Type: Application
    Filed: February 13, 2007
    Publication date: December 10, 2009
    Applicant: SIGNA CHEMISTRY, LLC
    Inventors: Michael Lefenfeld, James L. Dye, Partha Nandi, James Jackson
  • Publication number: 20080111104
    Abstract: The invention relates to lithium metal/porous metal oxide compositions. These lithium metal compositions are prepared by mixing liquid lithium metal with a porous metal oxide in an inert atmosphere under exothermic conditions sufficient to absorb the liquid lithium metal into the porous metal oxide pores. The lithium metal/porous metal oxide compositions of the invention are preferably loaded with lithium metal up to about 40% by weight, with about 20% to 40% by weight being the most preferred loading. The invention also relates to lithium reagent-porous metal oxide compositions having RLi absorbed into a porous oxide. In formula RLi, R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkaryl group, or an NR1R2 group; R1 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkaryl group; and R2 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and an alkaryl group. The preparation and use of these compositions are also described.
    Type: Application
    Filed: September 10, 2007
    Publication date: May 15, 2008
    Applicant: SiGNA Chemistry, LLC
    Inventors: Michael LEFENFELD, James L. DYE, Partha NANDI, James JACKSON