Patents by Inventor Patrick J. Meaney

Patrick J. Meaney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190163565
    Abstract: A memory system includes memory modules having a number of sets of memory devices including data memory devices for data and error correction code (ECC). The ECC memory devices carry ECC symbols in order to facilitate Redundant Array of Independent Memory (RAIM) functionalities for the memory modules. A host receives and decodes the ECC symbols and executes RAIM operations. The host and the memory modules are coupled by a number of channels, one channel per each set of the memory devices.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Inventors: Patrick J. MEANEY, Christian JACOBI, Barry M. TRAGER
  • Publication number: 20190163362
    Abstract: One or more memory systems, architectural structures, and/or methods of storing information in memory devices is disclosed to improve the data bandwidth and or to reduce the load on the communication links. The system may include one or more memory devices, one or more memory control circuits and one or more data buffer circuits. In one aspect, the data buffer circuit receives a next to be used store data tag from a Host wherein the store data tag specifies the data buffer location in the data buffer circuit to store data, and in response to receiving store data from the Host, moves the data received at the data buffer circuit into the data buffer pointed to by the previously received store data tag.
    Type: Application
    Filed: November 29, 2017
    Publication date: May 30, 2019
    Inventors: Steven R. Carlough, Susan M. Eickhoff, Warren E. Maule, Patrick J. Meaney, Stephen J. Powell, Gary A. Van Huben, Jie Zheng
  • Patent number: 10303545
    Abstract: A memory system includes memory modules having a number of sets of memory devices including data memory devices for data and error correction code (ECC). The ECC memory devices carry ECC symbols in order to facilitate Redundant Array of Independent Memory (RAIM) functionalities for the memory modules. A host receives and decodes the ECC symbols and executes RAIM operations. The host and the memory modules are coupled by a number of channels, one channel per each set of the memory devices.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: May 28, 2019
    Assignee: International Business Machines Corporation
    Inventors: Patrick J. Meaney, Christian Jacobi, Barry M. Trager
  • Publication number: 20190158218
    Abstract: Aspects of the invention include receiving a specified number of frames of bits at a receiver. At least one of the received frames includes cyclic redundancy code (CRC) bits. The specified number of frames is based at least in part on a CRC rate. It is determined, by performing a CRC check on the received frames, whether a change in transmission errors has occurred in the received frames. An increase in the CRC rate is initiated at the receiver based at least in part on determining that a change in transmission errors has occurred in the received frames. The increase in the CRC rate is synchronized between the receiver and the transmitter; and performed in parallel with functional operations performed by the receiver.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 23, 2019
    Inventors: Steven R. Carlough, Patrick J. Meaney, Gary Van Huben
  • Publication number: 20190158223
    Abstract: Aspects of the invention include using a cyclic redundancy code (CRC) multiple-input signature register (MISR) for early warning and fail detection. Received bits are monitored at a receiver for transmission errors. The monitoring includes receiving frames of bits that are a subset of frames of bits used by the transmitter to generate a multi-frame CRC. At least one of the received frames of bits includes payload bits and a source single check bit not included in the multi-frame CRC. It is determined whether a transmission error has occurred in the received frames of bits. The determining includes generating a calculated single check bit based at least in part on bits in the received frames of bits, and comparing the received source single check bit to the calculated single check bit. An error indication is transmitted to the transmitter if they don't match.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 23, 2019
    Inventors: Steven R. Carlough, Patrick J. Meaney, Gary Van Huben
  • Publication number: 20190158126
    Abstract: Aspects of the invention include calculating, by a transmitter, source cyclic redundancy code (CRC) bits for payload bits. The source CRC bits include source CRC bits for a first type of CRC check and source CRC bits for a second type of CRC check. The source CRC bits are stored at the transmitter. The payload bits and the source CRC bits for the first type of CRC check are transmitted to the receiver. The receiver performs the first type of CRC check based at least in part on the payload bits and the source CRC bits for the first type of CRC check. The receiver also calculates and stores at the receiver calculated CRC bits for the second type of CRC check. If the first type of CRC check indicates an error, a comparison of the source and calculated CRC bits for the second type of CRC check is initiated.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 23, 2019
    Inventors: Steven R. Carlough, Patrick J. Meaney, Gary Van Huben
  • Publication number: 20190158125
    Abstract: Aspects of the invention include monitoring frames of bits received at a receiver for transmission errors. At least one of the received frames of bits includes cyclic redundancy code (CRC) bits for a first type of CRC check. It is determined whether a change in transmission errors has occurred in the received frames by performing the first type of CRC check based at least in part on the received CRC bits and payload bits in the received frames. A change from the first type of CRC check to a second type of CRC check is initiated at the receiver based at least in part on determining that a change in transmission errors has occurred. The change is synchronized between the receiver and the transmitter, and performed in parallel with functional operations performed by the receiver.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 23, 2019
    Inventors: Steven R. Carlough, Patrick J. Meaney, Gary Van Huben
  • Patent number: 10296417
    Abstract: In some embodiments, a computer-implemented method includes maintaining two or more error indicators for correctable errors occurring at two or more memory components. Each of the error indicators may be associated with a corresponding memory component. A correctable error may be detected as occurring during a first memory fetch operation at a first memory component. A first error indicator corresponding to the first memory component may be set, responsive to the correctable error at the first memory component. An uncorrectable error may be detected during a second memory fetch operation. It may be detected that the first error indicator is set. The first memory component may be marked, responsive to the uncorrectable error and to detecting that the first error indicator is set. The two or more error indicators for correctable errors may thus determine which memory component to mark due to the uncorrectable error.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: May 21, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Glenn D. Gilda, Patrick J. Meaney
  • Publication number: 20190114091
    Abstract: A host divides a dataset into stripes and sends the stripes to respective data chips of a distributed memory buffer system, where the data chips buffer the respective slices. Each data chip can buffer stripes from multiple datasets. Through the use of: (i) error detection methods; (ii) tagging the stripes for identification; and (iii) acknowledgement responses from the data chips, the host keeps track of the status of each slice at the data chips. If errors are detected for a given stripe, the host resends the stripe in the next store cycle, concurrently with stripes for the next dataset. Once all stripes have been received error-free across all the data chips, the host issues a store command which triggers the data chips to move the respective stripes from buffer to memory.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 18, 2019
    Inventors: Susan M. Eickhoff, Steven R. Carlough, Patrick J. Meaney, Stephen J. Powell, Jie Zheng, Gary A. Van Huben
  • Publication number: 20190079840
    Abstract: Aspects of the invention include fetching data requested by a requestor from a primary memory in a memory system that includes the primary memory and a secondary memory mirroring the primary memory. An error status of the data fetched from the primary memory is determined. The error status is one of correctable error (CE), uncorrectable error (UE), and no error. Based at least in part on determining that the data fetched from the primary memory has the error status of no error, the data fetched from the primary memory is output to the requestor. Based at least in part on determining that the data fetched from the primary memory has the error status of UE or CE, the data requested by the requestor is fetched from the secondary memory.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 14, 2019
    Inventors: Marc A. Gollub, Warren E. Maule, Patrick J. Meaney
  • Publication number: 20190020565
    Abstract: A technique relates to dynamic time-domain reflectometry (TDR). A machine spares a bad lane in a bus. The bad lane is taken offline. TDR is dynamically executed on the bad lane while the bus is still in operation. A defect is isolated using results of the TDR.
    Type: Application
    Filed: July 17, 2017
    Publication date: January 17, 2019
    Inventors: Luiz C. Alves, Patrick J. Meaney, Christopher N. Oelsner, Gary A. Peterson, Christopher Steffen
  • Publication number: 20190020566
    Abstract: A technique relates to dynamic time-domain reflectometry (TDR). A machine spares a bad lane in a bus. The bad lane is taken offline. TDR is dynamically executed on the bad lane while the bus is still in operation. A defect is isolated using results of the TDR.
    Type: Application
    Filed: November 9, 2017
    Publication date: January 17, 2019
    Inventors: Luiz C. ALVES, Patrick J. MEANEY, Christopher N. OELSNER, Gary A. PETERSON, Christopher STEFFEN
  • Patent number: 10175893
    Abstract: Scheduling memory accesses in a memory system having a multiple ranks of memory, at most r ranks of which may be powered up concurrently, in which r is less than the number of ranks. If fewer than r ranks are powered up, a subset of requested powered down ranks is powered up, such that at r ranks are powered up, the subset of requested powered down ranks to be powered up including the most frequently accessed requested powered down ranks. Then, if fewer than r ranks are powered up, a subset of unrequested powered down ranks is powered up, such that a total of at most r ranks is powered up concurrently, the subset of unrequested powered down ranks to be powered up including the most frequently accessed unrequested powered down ranks.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: January 8, 2019
    Assignee: International Business Machines Corporation
    Inventors: James J. Bonanno, Michael J. Cadigan, Jr., Adam B. Collura, Daniel Lipetz, Patrick J. Meaney, Craig R. Walters
  • Publication number: 20180367166
    Abstract: Systems, methods, and computer-readable media are disclosed for performing reduced latency error decoding using a reduced latency symbol error correction decoder that utilizes enumerated parallel multiplication in lieu of division and replaces general multiplication with constant multiplication. The use of parallel multiplication in lieu of division can provide reduced latency and replacement of general multiplication with constant multiplication allows for logic reduction. In addition, the reduced symbol error correction decoder can utilize decode term sharing which can yield a further reduction in decoder logic and a further latency improvement.
    Type: Application
    Filed: December 4, 2017
    Publication date: December 20, 2018
    Inventors: Glenn D. Gilda, Patrick J. Meaney, Arthur O'Neill, Barry M. Trager
  • Publication number: 20180365177
    Abstract: A processor implemented method for spreading data traffic across memory controllers with respect to conditions is provided. The processor implemented method includes determining whether the memory controllers are balanced. The processor implemented method includes executing a conditional spreading with respect to the conditions when the memory controllers are determined as unbalanced. The processor implemented method includes executing an equal spreading when the memory controllers are determined as balanced.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: David D. Cadigan, Thomas J. Dewkett, Glenn D. Gilda, Patrick J. Meaney, Craig R. Walters
  • Publication number: 20180329777
    Abstract: In some embodiments, a computer-implemented method includes maintaining two or more error indicators for correctable errors occurring at two or more memory components. Each of the error indicators may be associated with a corresponding memory component. A correctable error may be detected as occurring during a first memory fetch operation at a first memory component. A first error indicator corresponding to the first memory component may be set, responsive to the correctable error at the first memory component. An uncorrectable error may be detected during a second memory fetch operation. It may be detected that the first error indicator is set. The first memory component may be marked, responsive to the uncorrectable error and to detecting that the first error indicator is set. The two or more error indicators for correctable errors may thus determine which memory component to mark due to the uncorrectable error.
    Type: Application
    Filed: July 24, 2018
    Publication date: November 15, 2018
    Inventors: Glenn D. Gilda, Patrick J. Meaney
  • Patent number: 10078461
    Abstract: A host divides a dataset into stripes and sends the stripes to respective data chips of a distributed memory buffer system, where the data chips buffer the respective slices. Each data chip can buffer stripes from multiple datasets. Through the use of: (i) error detection methods; (ii) tagging the stripes for identification; and (iii) acknowledgement responses from the data chips, the host keeps track of the status of each slice at the data chips. If errors are detected for a given stripe, the host resends the stripe in the next store cycle, concurrently with stripes for the next dataset. Once all stripes have been received error-free across all the data chips, the host issues a store command which triggers the data chips to move the respective stripes from buffer to memory.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 18, 2018
    Assignee: International Business Machines Corporation
    Inventors: Susan M. Eickhoff, Steven R. Carlough, Patrick J. Meaney, Stephen J. Powell, Jie Zheng, Gary A. Van Huben
  • Patent number: 10055287
    Abstract: In some embodiments, a computer-implemented method includes maintaining two or more error indicators for correctable errors occurring at two or more memory components. Each of the error indicators may be associated with a corresponding memory component. A correctable error may be detected as occurring during a first memory fetch operation at a first memory component. A first error indicator corresponding to the first memory component may be set, responsive to the correctable error at the first memory component. An uncorrectable error may be detected during a second memory fetch operation. It may be detected that the first error indicator is set. The first memory component may be marked, responsive to the uncorrectable error and to detecting that the first error indicator is set. The two or more error indicators for correctable errors may thus determine which memory component to mark due to the uncorrectable error.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: August 21, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Glenn D. Gilda, Patrick J. Meaney
  • Publication number: 20180203627
    Abstract: Embodiments include techniques used for a power-reduced redundant array of independent memory RAIM system. The technique includes blocking commands to one or more memory modules of the RAIM system and reading data from one or more unblocked memory modules. The technique also includes applying a power channel mark for one or more blocked memory modules, the power channel mark indicating the one or more blocked memory modules to a decoder for error correction.
    Type: Application
    Filed: January 17, 2017
    Publication date: July 19, 2018
    Inventors: GLENN D. GILDA, PATRICK J. MEANEY
  • Publication number: 20180173429
    Abstract: Scheduling memory accesses in a memory system having a multiple ranks of memory, at most r ranks of which may be powered up concurrently, in which r is less than the number of ranks. If fewer than r ranks are powered up, a subset of requested powered down ranks is powered up, such that at r ranks are powered up, the subset of requested powered down ranks to be powered up including the most frequently accessed requested powered down ranks. Then, if fewer than r ranks are powered up, a subset of unrequested powered down ranks is powered up, such that a total of at most r ranks is powered up concurrently, the subset of unrequested powered down ranks to be powered up including the most frequently accessed unrequested powered down ranks.
    Type: Application
    Filed: July 26, 2017
    Publication date: June 21, 2018
    Inventors: James J. Bonanno, Michael J. Cadigan, JR., Adam B. Collura, Daniel Lipetz, Patrick J. Meaney, Craig R. Walters