Patents by Inventor Patrick Kern

Patrick Kern has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10690347
    Abstract: Combustor dome assemblies having combustor deflectors are provided. For example, a combustor dome assembly comprises a combustor dome defining an opening; a ceramic matrix composite (CMC) deflector positioned adjacent the combustor dome on an aft side of the assembly; a fuel-air mixer defining a groove about an outer perimeter thereof; and a seal plate including a key. The CMC deflector includes a cup extending forward through the opening in the combustor dome that defines one or more bayonets and a slot. The bayonets are received in the fuel-air mixer groove, and the seal plate key is received in the CMC deflector slot. In another embodiment, where the seal plate may be omitted, a spring is positioned between the fuel-air mixer and the CMC deflector to hold the CMC deflector in place with respect to the combustor dome. Methods of assembling combustor dome assemblies having CMC deflectors also are provided.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 23, 2020
    Assignee: General Electric Company
    Inventors: Brandon ALlanson Reynolds, Matthew Mark Weaver, Daniel Patrick Kerns
  • Publication number: 20200024999
    Abstract: Flow path assemblies of gas turbine engines are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes a combustor portion extending through a combustion section of the gas turbine engine and a turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The combustor portion and the turbine portion are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils, each nozzle airfoil having an inner end radially opposite an outer end. The inner wall or the unitary outer wall defines a plurality of openings therethrough, and each opening is configured for receipt of one of the plurality of nozzle airfoils. Methods of assembling flow path assemblies also are provided.
    Type: Application
    Filed: April 22, 2019
    Publication date: January 23, 2020
    Inventors: Brandon ALIanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher
  • Publication number: 20200025009
    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly comprises an inner wall defining an inner boundary of a flow path and a plurality of pockets therein, and a unitary outer wall defining an outer boundary of the flow path. The unitary outer wall includes combustor and turbine portions that are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils that each have an inner end radially opposite an outer end and define an internal cavity for receipt of a flow of cooling fluid. The inner end of each nozzle airfoil is received in one of the plurality of inner wall pockets and defines an outlet for the flow of cooling fluid to flow from the internal cavity to the pocket, which forms a fluid curtain to discourage fluid leakage from the flow path.
    Type: Application
    Filed: April 8, 2019
    Publication date: January 23, 2020
    Inventors: Daniel Patrick Kerns, Brandon ALIanson Reynolds
  • Publication number: 20190338676
    Abstract: A flow path assembly for a gas turbine engine is provided. The flow path assembly may include an outer casing comprising a metal material having a first coefficient of thermal expansion, a ceramic structure comprising a ceramic material having a second coefficient of thermal expansion, and a mounting component attached on a first end to the outer casing and attached on a second end to the ceramic structure. The mounting component may be constructed from at least two materials transitioning from the first end to the second end such that the coefficient of thermal expansion is different at the first end than the second end.
    Type: Application
    Filed: June 27, 2019
    Publication date: November 7, 2019
    Inventors: Daniel Patrick Kerns, Mark Eugene Noe, Dennis Paul Dry, Brandon ALlanson Reynolds
  • Patent number: 10458260
    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly defining a flow path through a gas turbine engine, as well as axial and radial directions that are orthogonal to one another and a circumferential direction extending about the axial direction, comprises a nozzle airfoil having a first end opposite a second end and a wall defining a flow path boundary. The wall has an opening therein through which the second end of the nozzle airfoil protrudes such that the second end extends outside of the flow path. The flow path assembly further comprises a cap extending over the second end of the nozzle airfoil and an attachment member extending through the second end and the cap to attach the second end to the cap. Other embodiments of a flow path assembly having nozzle airfoils decoupled from the flow path boundary also are provided.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: October 29, 2019
    Assignee: General Electric Company
    Inventors: Daniel Patrick Kerns, Brandon ALlanson Reynolds, Mark Eugene Noe
  • Patent number: 10385709
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 20, 2019
    Assignee: General Electric Company
    Inventors: Brandon Allanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser
  • Patent number: 10385731
    Abstract: A flow path assembly for a gas turbine engine is provided. The flow path assembly may include an outer casing comprising a metal material having a first coefficient of thermal expansion, a ceramic structure comprising a ceramic material having a second coefficient of thermal expansion, and a mounting component attached on a first end to the outer casing and attached on a second end to the ceramic structure. The mounting component may be constructed from at least two materials transitioning from the first end to the second end such that the coefficient of thermal expansion is different at the first end than the second end.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: August 20, 2019
    Assignee: General Electric Company
    Inventors: Daniel Patrick Kerns, Mark Eugene Noe, Dennis Paul Dry, Brandon ALlanson Reynolds
  • Publication number: 20190249556
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 15, 2019
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser
  • Patent number: 10378373
    Abstract: Flow path assemblies of gas turbine engines are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes a combustor portion extending through a combustion section of the gas turbine engine and a turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The combustor portion and the turbine portion are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils, each nozzle airfoil having an inner end radially opposite an outer end. The inner wall or the unitary outer wall defines a plurality of openings therethrough, and each opening is configured for receipt of one of the plurality of nozzle airfoils. Methods of assembling flow path assemblies also are provided.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 13, 2019
    Assignee: General Electric Company
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher
  • Patent number: 10253643
    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly comprises an inner wall defining an inner boundary of a flow path and a plurality of pockets therein, and a unitary outer wall defining an outer boundary of the flow path. The unitary outer wall includes combustor and turbine portions that are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils that each have an inner end radially opposite an outer end and define an internal cavity for receipt of a flow of cooling fluid. The inner end of each nozzle airfoil is received in one of the plurality of inner wall pockets and defines an outlet for the flow of cooling fluid to flow from the internal cavity to the pocket, which forms a fluid curtain to discourage fluid leakage from the flow path.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: April 9, 2019
    Assignee: General Electric Company
    Inventors: Daniel Patrick Kerns, Brandon ALlanson Reynolds
  • Publication number: 20190063246
    Abstract: Flow path assemblies and methods for forming such flow path assemblies for gas turbine engines are provided. For example, a method for assembling an airfoil with a boundary structure to form a flow path assembly is provided. The method includes machining an opening into the boundary structure. The opening is sized to receive an airfoil or other component. The method also includes machining a cutout into the boundary structure proximate the opening. A locking feature is inserted into the cutout. When the airfoil is inserted into the opening, the locking feature interlocks the airfoil with the boundary structure. To seal the airfoil with the boundary structure, the airfoil is pressed against or into the boundary structure. When the airfoil is pressed, the locking feature is compressed such that a seal is formed between the airfoil and the boundary structure to seal the flow path assembly.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Inventors: David Alan Frey, Kirk Douglas Gallier, Daniel Patrick Kerns, Brandon ALlanson Reynolds
  • Publication number: 20190003711
    Abstract: Combustor dome assemblies having combustor deflectors are provided. For example, a combustor dome assembly comprises a combustor dome defining an opening; a ceramic matrix composite (CMC) deflector positioned adjacent the combustor dome on an aft side of the assembly; a fuel-air mixer defining a groove about an outer perimeter thereof; and a seal plate including a key. The CMC deflector includes a cup extending forward through the opening in the combustor dome that defines one or more bayonets and a slot. The bayonets are received in the fuel-air mixer groove, and the seal plate key is received in the CMC deflector slot. In another embodiment, where the seal plate may be omitted, a spring is positioned between the fuel-air mixer and the CMC deflector to hold the CMC deflector in place with respect to the combustor dome. Methods of assembling combustor dome assemblies having CMC deflectors also are provided.
    Type: Application
    Filed: February 1, 2017
    Publication date: January 3, 2019
    Inventors: Brandon ALlanson Reynolds, Matthew Mark Weaver, Daniel Patrick Kerns
  • Publication number: 20180355760
    Abstract: A flow path assembly for a gas turbine engine is provided. The flow path assembly may include an outer casing comprising a metal material having a first coefficient of thermal expansion, a ceramic structure comprising a ceramic material having a second coefficient of thermal expansion, and a mounting component attached on a first end to the outer casing and attached on a second end to the ceramic structure. The mounting component may be constructed from at least two materials transitioning from the first end to the second end such that the coefficient of thermal expansion is different at the first end than the second end.
    Type: Application
    Filed: June 12, 2017
    Publication date: December 13, 2018
    Inventors: Daniel Patrick Kerns, Mark Eugene Noe, Dennis Paul Dry, Brandon ALlanson Reynolds
  • Publication number: 20180340431
    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly defining a flow path through a gas turbine engine, as well as axial and radial directions that are orthogonal to one another and a circumferential direction extending about the axial direction, comprises a nozzle airfoil having a first end opposite a second end and a wall defining a flow path boundary. The wall has an opening therein through which the second end of the nozzle airfoil protrudes such that the second end extends outside of the flow path. The flow path assembly further comprises a cap extending over the second end of the nozzle airfoil and an attachment member extending through the second end and the cap to attach the second end to the cap. Other embodiments of a flow path assembly having nozzle airfoils decoupled from the flow path boundary also are provided.
    Type: Application
    Filed: May 24, 2017
    Publication date: November 29, 2018
    Inventors: Daniel Patrick Kerns, Brandon ALlanson Reynolds, Mark Eugene Noe
  • Publication number: 20180266264
    Abstract: Flow path assemblies for gas turbine engines are provided. For example, a flow path assembly comprises an inner wall defining an inner boundary of a flow path and a plurality of pockets therein, and a unitary outer wall defining an outer boundary of the flow path. The unitary outer wall includes combustor and turbine portions that are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils that each have an inner end radially opposite an outer end and define an internal cavity for receipt of a flow of cooling fluid. The inner end of each nozzle airfoil is received in one of the plurality of inner wall pockets and defines an outlet for the flow of cooling fluid to flow from the internal cavity to the pocket, which forms a fluid curtain to discourage fluid leakage from the flow path.
    Type: Application
    Filed: February 7, 2017
    Publication date: September 20, 2018
    Inventors: Daniel Patrick Kerns, Brandon ALlanson Reynolds
  • Publication number: 20180238181
    Abstract: Flow path assemblies of gas turbine engines are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes a combustor portion extending through a combustion section of the gas turbine engine and a turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The combustor portion and the turbine portion are integrally formed as a single unitary structure. The flow path assembly further comprises a plurality of nozzle airfoils, each nozzle airfoil having an inner end radially opposite an outer end. The inner wall or the unitary outer wall defines a plurality of openings therethrough, and each opening is configured for receipt of one of the plurality of nozzle airfoils. Methods of assembling flow path assemblies also are provided.
    Type: Application
    Filed: February 23, 2017
    Publication date: August 23, 2018
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher
  • Publication number: 20180238184
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Application
    Filed: February 23, 2017
    Publication date: August 23, 2018
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser
  • Publication number: 20180195403
    Abstract: A shroud assembly includes a shroud segment and a hanger. In one exemplary aspect, the shroud segment has a shroud body extending substantially along a circumferential direction between a first end and a second end. The shroud body defines a radial centerline along the circumferential direction. A flange is attached to or integral with the shroud body. The flange is pivotally coupled with the hanger at a location spaced from the radial centerline of the shroud body.
    Type: Application
    Filed: January 12, 2017
    Publication date: July 12, 2018
    Inventors: Daniel Patrick Kerns, Dennis Paul Dry, Megan Elizabeth Scheitlin, Alexander Martin Sener, Jason David Shapiro
  • Patent number: 8733229
    Abstract: A device for producing a beverage from a capsule, comprising a motor-driven extraction module which comprises a first jaw member and a cooperating second jaw member, wherein in an opened state of the extraction module the jaw members are distanced from each other while in the closed state the jaw members tightly enclose a capsule space, a motor for controlling the transfer of the extraction module between the closed and opened state, and a knee lever arrangement, being functionally connected to the motor and to at least one of the jaw members and being designed to convert the motor drive action into a closure force, i.e. a force with which the first and second jaw member are approaching each other, which is increasing during the course of the closure movement.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: May 27, 2014
    Assignee: Nestec S.A.
    Inventors: Christian Jarisch, Jean-Luc Denisart, Antoine Ryser, Patrick Kern
  • Publication number: 20130032034
    Abstract: A device for producing a beverage from a capsule, comprising a motor-driven extraction module which comprises a first jaw member and a cooperating second jaw member, wherein in an opened state of the extraction module the jaw members are distanced from each other while in the closed state the jaw members tightly enclose a capsule space, a motor for controlling the transfer of the extraction module between the closed and opened state, and a knee lever arrangement, being functionally connected to the motor and to at least one of the jaw members and being designed to convert the motor drive action into a closure force, i.e. a force with which the first and second jaw member are approaching each other, which is increasing during the course of the closure movement.
    Type: Application
    Filed: August 29, 2012
    Publication date: February 7, 2013
    Applicant: NESTEC S.A.
    Inventors: Christian Jarisch, Jean-Luc Denisart, Antoine Ryser, Patrick Kern