Patents by Inventor Patrick Morrow

Patrick Morrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145557
    Abstract: A device is disclosed. The device includes a first epitaxial region, a second epitaxial region, a first gate region between the first epitaxial region and a second epitaxial region, a first dielectric structure underneath the first epitaxial region, a second dielectric structure underneath the second epitaxial region, a third epitaxial region underneath the first epitaxial region, a fourth epitaxial region underneath the second epitaxial region, and a second gate region between the third epitaxial region and a fourth epitaxial region and below the first gate region. The device also includes, a conductor via extending from the first epitaxial region, through the first dielectric structure and the third epitaxial region, the conductor via narrower at an end of the conductor via that contacts the first epitaxial region than at an opposite end.
    Type: Application
    Filed: January 9, 2024
    Publication date: May 2, 2024
    Inventors: Ehren MANNEBACH, Aaron LILAK, Hui Jae YOO, Patrick MORROW, Anh PHAN, Willy RACHMADY, Cheng-Ying HUANG, Gilbert DEWEY
  • Publication number: 20240128340
    Abstract: Disclosed herein are integrated circuit (IC) contact structures, and related devices and methods. For example, in some embodiments, an IC contact structure may include an electrical element, a metal on the electrical element, and a semiconductor material on the metal. The metal may conductively couple the semiconductor material and the electrical element.
    Type: Application
    Filed: December 26, 2023
    Publication date: April 18, 2024
    Applicant: Intel Corporation
    Inventors: Patrick Morrow, Glenn A. Glass, Anand S. Murthy, Rishabh Mehandru
  • Patent number: 11948831
    Abstract: An apparatus is provided which comprises: a substrate; one or more active devices adjacent to the substrate; a first set of one or more layers to interconnect the one or more active devices; a second set of one or more layers; and a layer adjacent to one of the layers of the first and second sets, wherein the layer is to bond the one of the layers of the first and second sets.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: April 2, 2024
    Assignee: Intel Corporation
    Inventors: Anup Pancholi, Prashant Majhi, Paul Fischer, Patrick Morrow
  • Patent number: 11948874
    Abstract: An integrated circuit interconnect level including a lower metallization line vertically spaced from upper metallization lines. Lower metallization lines may be self-aligned to upper metallization lines enabling increased metallization line width without sacrificing line density for a given interconnect level. Combinations of upper and lower metallization lines within an interconnect metallization level may be designed to control intra-layer resistance/capacitance of integrated circuit interconnect. Dielectric material between two adjacent co-planar metallization lines may be recessed or deposited selectively to the metallization lines. Supplemental metallization may then be deposited and planarized. A top surface of the supplemental metallization may either be recessed to form lower metallization lines between upper metallization lines, or planarized with dielectric material to form upper metallization lines between lower metallization lines.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: April 2, 2024
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Sukru Yemenicioglu, Patrick Morrow, Richard Schenker, Mauro Kobrinsky
  • Publication number: 20240105589
    Abstract: An IC device includes a metal layer that includes staggered metal lines. The metal lines are in two or more levels along a direction. There may be one or more metal lines in each level. At least some of the metal lines are aligned along the direction so that widths of the metal lines may be maximized for a given total width of the metal layer. The alignment of the metal lines may be achieved through DSA of a diblock copolymer. The metal layer may be connected to vias in two or more levels. The vias may be also connected to another metal layer or a semiconductor device in a FEOL section of the IC device. A via and the metal line connected to the via may be formed through a same recess and deposition process to eliminate interface between the via and metal line.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Shao Ming Koh, Patrick Morrow, June Choi, Sukru Yemenicioglu, Nikhil Jasvant Mehta
  • Patent number: 11942416
    Abstract: Embodiments disclosed herein include electronic systems with vias that include a horizontal and vertical portion in order to provide interconnects to stacked components, and methods of forming such systems. In an embodiment, an electronic system comprises a board, a package substrate electrically coupled to the board, and a die electrically coupled to the package substrate. In an embodiment the die comprises a stack of components, and a via adjacent to the stack of components, wherein the via comprises a vertical portion and a horizontal portion.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Ehren Mannebach, Aaron Lilak, Hui Jae Yoo, Patrick Morrow, Anh Phan, Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey, Rishabh Mehandru
  • Patent number: 11942526
    Abstract: Disclosed herein are integrated circuit (IC) contact structures, and related devices and methods. For example, in some embodiments, an IC contact structure may include an electrical element, a metal on the electrical element, and a semiconductor material on the metal. The metal may conductively couple the semiconductor material and the electrical element.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Patrick Morrow, Glenn A. Glass, Anand S. Murthy, Rishabh Mehandru
  • Patent number: 11935933
    Abstract: An apparatus including a circuit structure including a device stratum including a plurality of devices including a first side and an opposite second side; and a metal interconnect coupled to at least one of the plurality of devices from the second side of the device stratum. A method including forming a transistor device including a channel between a source region and a drain region and a gate electrode on the channel defining a first side of the device; and forming an interconnect to one of the source region and the drain region from a second side of the device.
    Type: Grant
    Filed: April 5, 2023
    Date of Patent: March 19, 2024
    Assignee: Intel Corporation
    Inventors: Patrick Morrow, Rishabh Mehandru, Aaron D. Lilak, Kimin Jun
  • Patent number: 11935891
    Abstract: Multiple non-silicon semiconductor material layers may be stacked within a fin structure. The multiple non-silicon semiconductor material layers may include one or more layers that are suitable for P-type transistors. The multiple non-silicon semiconductor material layers may further include one or more one or more layers that are suited for N-type transistors. The multiple non-silicon semiconductor material layers may further include one or more intervening layers separating the N-type from the P-type layers. The intervening layers may be at least partially sacrificial, for example to allow one or more of a gate, source, or drain to wrap completely around a channel region of one or more of the N-type and P-type transistors.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: March 19, 2024
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Patrick Morrow, Ravi Pillarisetty, Rishabh Mehandru, Cheng-ying Huang, Willy Rachmady, Aaron Lilak
  • Patent number: 11916118
    Abstract: A device is disclosed. The device includes a first epitaxial region, a second epitaxial region, a first gate region between the first epitaxial region and a second epitaxial region, a first dielectric structure underneath the first epitaxial region, a second dielectric structure underneath the second epitaxial region, a third epitaxial region underneath the first epitaxial region, a fourth epitaxial region underneath the second epitaxial region, and a second gate region between the third epitaxial region and a fourth epitaxial region and below the first gate region. The device also includes, a conductor via extending from the first epitaxial region, through the first dielectric structure and the third epitaxial region, the conductor via narrower at an end of the conductor via that contacts the first epitaxial region than at an opposite end.
    Type: Grant
    Filed: April 4, 2023
    Date of Patent: February 27, 2024
    Assignee: Intel Corporation
    Inventors: Ehren Mannebach, Aaron Lilak, Hui Jae Yoo, Patrick Morrow, Anh Phan, Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey
  • Publication number: 20240063120
    Abstract: Embodiments of a microelectronic assembly comprise: a plurality of layers of integrated circuit (IC) dies, each layer coupled to adjacent layers by first interconnects having a pitch of less than 10 micrometers between adjacent first interconnects; an end layer in the plurality of layers proximate to a first side of the plurality of layers comprises a dielectric material around IC dies in the end layer and a through-dielectric via (TDV) in the dielectric material of the end layer; a support structure coupled to the first side of the plurality of layers, the support structure comprising a structurally stiff base with conductive traces proximate to the end layer, the conductive traces coupled to the end layer by second interconnects; and a package substrate coupled to a second side of the plurality of layers, the second side being opposite to the first side.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 22, 2024
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Shawna M. Liff, Debendra Mallik, Christopher M. Pelto, Kimin Jun, Johanna M. Swan, Lei Jiang, Feras Eid, Krishna Vasanth Valavala, Henning Braunisch, Patrick Morrow, William J. Lambert
  • Publication number: 20240053987
    Abstract: An apparatus, system, and method for register file circuits are provided. A register file circuit can include a first write bit line (WBL), a first P-channel metal oxide semiconductor (PMOS) transistor including a source coupled to the WBL, a first inverter including an input coupled to a drain of the first PMOS transistor, a second PMOS transistor including a source coupled to an output of the first inverter, and a second WBL (WBLB) coupled to a drain of the second PMOS transistor. 1R1W register file and 2R1W register file designs are provided.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 15, 2024
    Inventors: Charles Augustine, Seenivasan Subramaniam, Patrick Morrow, Muhammad M. Khellah
  • Publication number: 20240047559
    Abstract: Gate-all-around integrated circuit structures having depopulated channel structures, and methods of fabricating gate-all-around integrated circuit structures having depopulated channel structures using a bottom-up oxidation approach, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a substrate. The vertical arrangement of nanowires has one or more active nanowires above one or more oxidized nanowires. A gate stack is over the vertical arrangement of nanowires and around the one or more oxidized nanowires.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 8, 2024
    Inventors: Willy RACHMADY, Gilbert DEWEY, Jack T. KAVALIEROS, Aaron LILAK, Patrick MORROW, Anh PHAN, Cheng-Ying HUANG, Ehren MANNEBACH
  • Patent number: 11894262
    Abstract: Techniques are disclosed for forming integrated circuit structures having a plurality of non-planar transistors. An insulation structure is provided between channel, source, and drain regions of neighboring fins. The insulation structure is formed during back side processing, wherein at least a first portion of the isolation material between adjacent fins is recessed to expose a sub-channel portion of the semiconductor fins. A spacer material is then deposited at least on the exposed opposing sidewalls of the exposed sub-channel portion of each fin. The isolation material is then further recessed to form an air gap between gate, source, and drain regions of neighboring fins. The air gap electrically isolates the source/drain regions of one fin from the source/drain regions of an adjacent fin, and likewise isolates the gate region of the one fin from the gate region of the adjacent fin. The air gap can be filled with a dielectric material.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Rishabh Mehandru, Patrick Morrow
  • Patent number: 11894372
    Abstract: A device is disclosed. The device includes a first semiconductor fin, a first source-drain epitaxial region adjacent a first portion of the first semiconductor fin, a second source-drain epitaxial region adjacent a second portion of the first semiconductor fin, a first gate conductor above the first semiconductor fin, a gate spacer covering the sides of the gate conductor, a second semiconductor fin below the first semiconductor fin, a second gate conductor on a first side of the second semiconductor fin and a third gate conductor on a second side of the second semiconductor fin, a third source-drain epitaxial region adjacent a first portion of the second semiconductor fin, and a fourth source-drain epitaxial region adjacent a second portion of the second semiconductor fin. The device also includes a dielectric isolation structure below the first semiconductor fin and above the second semiconductor fin that separates the first semiconductor fin and the second semiconductor fin.
    Type: Grant
    Filed: January 11, 2023
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Cheng-Ying Huang, Gilbert Dewey, Aaron Lilak, Patrick Morrow, Anh Phan, Ehren Mannebach, Jack T. Kavalieros
  • Patent number: 11869894
    Abstract: A stacked device structure includes a first device structure including a first body that includes a semiconductor material, and a plurality of terminals coupled with the first body. The stacked device structure further includes an insulator between the first device structure and a second device structure. The second device structure includes a second body such as a fin structure directly above the insulator. The second device structure further includes a gate coupled to the fin structure, a spacer including a dielectric material adjacent to the gate, and an epitaxial structure adjacent to a sidewall of the fin structure and between the spacer and the insulator. A metallization structure is coupled to a sidewall surface of the epitaxial structure, and further coupled with one of the terminals of the first device.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: January 9, 2024
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Anh Phan, Patrick Morrow, Willy Rachmady, Gilbert Dewey, Jessica M. Torres, Kimin Jun, Tristan A. Tronic, Christopher J. Jezewski, Hui Jae Yoo, Robert S. Chau, Chi-Hwa Tsang
  • Publication number: 20230420460
    Abstract: An integrated circuit structure includes a device layer including an upper device above a lower device. The upper device includes an upper source or drain region, and an upper source or drain contact coupled to the upper source or drain region. The lower device includes a lower source or drain region. A first conductive feature is below the device layer, where the first conductive feature is coupled to the lower source or drain region. A second conductive feature vertically extends through the device layer. In an example, the second conductive feature is to couple (i) the first conductive feature below the device layer and (ii) an interconnect structure above the device layer. Thus, the first and second conductive features facilitate a connection between the interconnect structure on the frontside of the integrated circuit and the lower source or drain region towards the backside of the integrated circuit.
    Type: Application
    Filed: June 23, 2022
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Patrick Morrow, Quan Shi, Rohit Galatage, Nicole K. Thomas, Munzarin F. Qayyum, Jami A. Wiedemer, Gilbert Dewey, Mauro J. Kobrinsky, Marko Radosavljevic, Jack T. Kavalieros
  • Publication number: 20230420562
    Abstract: Techniques are provided herein to form non-planar semiconductor devices in a stacked transistor configuration adjacent to stressor materials. In one example, an n-channel device and a p-channel device may both be gate-all-around transistors each having any number of nanoribbons extending in the same direction, where the n-channel device is located vertically above the p-channel device (or vice versa). Source or drain regions are adjacent to both ends of the n-channel device and both ends of the p-channel device. On the opposite side of the stacked source or drain regions (e.g., opposite from the nanoribbons), stressor materials may be used to fill the gate trench in place of additional semiconductor devices. The stressor materials may include, for instance, a compressive stressor material adjacent to the p-channel device and/or a tensile stressor material adjacent to the n-channel device. The stressor material(s) may form or otherwise be part of a diffusion cut structure.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Munzarin F. Qayyum, Nicole K. Thomas, Rohit Galatage, Patrick Morrow, Jami A. Wiedemer, Marko Radosavljevic, Jack T. Kavalieros
  • Publication number: 20230420528
    Abstract: An integrated circuit structure includes a source or drain region, and a contact for the source or drain region. The contact has (i) an upper portion outside the source or drain region and (ii) a lower portion extending within the source or drain region. For example, the source or drain region wraps around the lower portion of the contact, such that an entire perimeter of the lower portion of the contact is adjacent to the source or drain region.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Nitesh Kumar, Willy Rachmady, Cheng-Ying Huang, Rohit Galatage, Patrick Morrow, Marko Radosavljevic, Jami A. Wiedemer, Subrina Rafique, Mauro J. Kobrinsky
  • Patent number: 11854894
    Abstract: Integrated circuit cell architectures including both front-side and back-side structures. One or more of back-side implant, semiconductor deposition, dielectric deposition, metallization, film patterning, and wafer-level layer transfer is integrated with front-side processing. Such double-side processing may entail revealing a back side of structures fabricated from the front-side of a substrate. Host-donor substrate assemblies may be built-up to support and protect front-side structures during back-side processing. Front-side devices, such as FETs, may be modified and/or interconnected during back-side processing. Electrical test may be performed from front and back sides of a workpiece. Back-side devices, such as FETs, may be integrated with front-side devices to expand device functionality, improve performance, or increase device density.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: December 26, 2023
    Assignee: Intel Corporation
    Inventors: Valluri R. Rao, Patrick Morrow, Rishabh Mehandru, Doug Ingerly, Kimin Jun, Kevin O'Brien, Paul Fischer, Szuya S. Liao, Bruce Block