Patents by Inventor Patrick Reilly

Patrick Reilly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180066364
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 8, 2018
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 9847222
    Abstract: Provided herein are methods and apparatus for improved flowable dielectric deposition on substrate surfaces. The methods involve improving nucleation and wetting on the substrate surface without forming a thick high wet etch rate interface layer. According to various embodiments, the methods may include single or multi-stage remote plasma treatments of a deposition surface. In some embodiments, a treatment may include exposure to both a reducing chemistry and a hydrogen-containing oxidizing chemistry. Apparatus for performing the methods are also provided.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: December 19, 2017
    Assignee: Lam Research Corporation
    Inventors: Patrick Reilly, Harald te Nijenhuis, Nerissa Draeger, Bart J. van Schravendijk, Nicholas Muga Ndiege
  • Patent number: 9816187
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: November 14, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20170301537
    Abstract: Embodiments of the disclosure relate to deposition of a conformal carbon-based material. In one embodiment, the method comprises depositing a sacrificial dielectric layer over a substrate, forming patterned features on the substrate by removing portions of the sacrificial dielectric layer to expose an upper surface of the substrate, introducing a hydrocarbon source, a plasma-initiating gas, and a dilution gas into the processing chamber, generating a plasma in the processing chamber at a deposition temperature of about 80° C. to about 550° C. to deposit a conformal amorphous carbon layer on the patterned features and the exposed upper surface of the substrate, selectively removing the amorphous carbon layer from an upper surface of the patterned features and the upper surface of the substrate using an anisotropic etching process to provide the patterned features filled within sidewall spacers, and removing the patterned features formed from the sacrificial dielectric layer.
    Type: Application
    Filed: June 28, 2017
    Publication date: October 19, 2017
    Inventors: Swayambhu P. BEHERA, Shahid SHAIKH, Pramit MANNA, Mandar B. PANDIT, Tersem SUMMAN, Patrick REILLY, Deenesh PADHI, Bok Hoen KIM, Heung Lak PARK, Derek R. WITTY
  • Patent number: 9721784
    Abstract: Embodiments of the invention relate to deposition of a conformal carbon-based material. In one embodiment, the method comprises depositing a sacrificial dielectric layer with a predetermined thickness over a substrate, forming patterned features on the substrate by removing portions of the sacrificial dielectric layer to expose an upper surface of the substrate, introducing a hydrocarbon source, a plasma-initiating gas, and a dilution gas into the processing chamber, wherein a volumetric flow rate of hydrocarbon source:plasma-initiating gas:dilution gas is in a ratio of 1:0.5:20, generating a plasma at a deposition temperature of about 300 C to about 500 C to deposit a conformal amorphous carbon layer on the patterned features and the exposed upper surface of the substrate, selectively removing the amorphous carbon layer from an upper surface of the patterned features and the upper surface of the substrate, and removing the patterned features.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: August 1, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Swayambhu P. Behera, Shahid Shaikh, Pramit Manna, Mandar B. Pandit, Tersem Summan, Patrick Reilly, Deenesh Padhi, Bok Hoen Kim, Heung Lak Park, Derek R. Witty
  • Publication number: 20170016118
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: September 28, 2016
    Publication date: January 19, 2017
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 9539489
    Abstract: A summer style ski having three different types of wheels aligned to allow the ski to travel on non-snow or ice surfaces and to create the feel of carving or turning on a paved surface.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 10, 2017
    Assignee: Lafayette College
    Inventors: John Burns, Patrick Reilly, Peter Hauke, Daniel DeSena, John Floyd, Keaton Holappa, Matt Smith
  • Patent number: 9458537
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: October 4, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20160175692
    Abstract: A summer style ski having three different types of wheels aligned to allow the ski to travel on non-snow or ice surfaces and to create the feel of carving or turning on a paved surface.
    Type: Application
    Filed: December 21, 2015
    Publication date: June 23, 2016
    Inventors: John Burns, Patrick Reilly, Peter Hauke, Daniel DeSena, John Floyd, Keaton Holappa, Matt Smith
  • Publication number: 20160017497
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: NAGARAJAN RAJAGOPALAN, Xinhai HAN, Michael TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Publication number: 20160005596
    Abstract: Embodiments of the invention relate to deposition of a conformal carbon-based material. In one embodiment, the method comprises depositing a sacrificial dielectric layer with a predetermined thickness over a substrate, forming patterned features on the substrate by removing portions of the sacrificial dielectric layer to expose an upper surface of the substrate, introducing a hydrocarbon source, a plasma-initiating gas, and a dilution gas into the processing chamber, wherein a volumetric flow rate of hydrocarbon source: plasma-initiating gas: dilution gas is in a ratio of 1:0.5:20, generating a plasma at a deposition temperature of about 300 C to about 500 C to deposit a conformal amorphous carbon layer on the patterned features and the exposed upper surface of the substrate, selectively removing the amorphous carbon layer from an upper surface of the patterned features and the upper surface of the substrate, and removing the patterned features.
    Type: Application
    Filed: February 14, 2014
    Publication date: January 7, 2016
    Inventors: Swayambhu P. BEHERA, Shahid SHAIKH, Pramit MANNA, Mandar B. PANDIT, Tersem SUMMAN, Patrick REILLY, Deenesh PADHI, Bok Hoen KIM, Heung Lak PARK, Derek R. WITTY
  • Patent number: 9157730
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 13, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik
  • Publication number: 20150226540
    Abstract: Apparatus and method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: October 23, 2013
    Publication date: August 13, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik
  • Publication number: 20150118862
    Abstract: Provided herein are methods and apparatus for improved flowable dielectric deposition on substrate surfaces. The methods involve improving nucleation and wetting on the substrate surface without forming a thick high wet etch rate interface layer. According to various embodiments, the methods may include single or multi-stage remote plasma treatments of a deposition surface. In some embodiments, a treatment may include exposure to both a reducing chemistry and a hydrogen-containing oxidizing chemistry. Apparatus for performing the methods are also provided.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 30, 2015
    Inventors: Patrick Reilly, Harald te Nijenhuis, Nerissa Draeger, Bart J. van Schravendijk, Nicholas Muga Ndiege
  • Patent number: 8778813
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, a shield member disposed in the processing chamber below the substrate support, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source, and an electrode separated from the conductive gas distributor and the chamber body by electrical insulators. The electrode is also coupled to a source of electric power. The substrate support is formed with a stiffness that permits very little departure from parallelism. The shield member thermally shields a substrate transfer opening in the lower portion of the chamber body. A pumping plenum is located below the substrate support processing position, and is spaced apart therefrom.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: July 15, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Mark Fodor, Jianhua Zhou, Amit Bansal, Mohamad A. Ayoub, Shahid Shaikh, Patrick Reilly, Deenesh Padhi, Thomas Nowak
  • Publication number: 20140118751
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: October 17, 2013
    Publication date: May 1, 2014
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 8679987
    Abstract: Embodiments described herein relate to a method for processing a substrate. In one embodiment, the method includes introducing a gas mixture comprising a hydrocarbon source and a diluent gas into a deposition chamber located within a processing system, generating a plasma from the gas mixture in the deposition chamber at a temperature between about 200° C. and about 700° C. to form a low-hydrogen content amorphous carbon layer on the substrate, transferring the substrate into a curing chamber located within the processing system without breaking vacuum, and exposing the substrate to UV radiation within the curing chamber at a curing temperature above about 200° C.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: March 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Patrick Reilly, Shahid Shaikh, Tersem Summan, Deenesh Padhi, Sanjeev Baluja, Juan Carlos Rocha-Alvarez, Thomas Nowak, Bok Hoen Kim, Derek R. Witty
  • Publication number: 20130302996
    Abstract: Embodiments described herein relate to a method for processing a substrate. In one embodiment, the method includes introducing a gas mixture comprising a hydrocarbon source and a diluent gas into a deposition chamber located within a processing system, generating a plasma from the gas mixture in the deposition chamber at a temperature between about 200° C. and about 700° C. to form a low-hydrogen content amorphous carbon layer on the substrate, transferring the substrate into a curing chamber located within the processing system without breaking vacuum, and exposing the substrate to UV radiation within the curing chamber at a curing temperature above about 200° C.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 14, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Patrick REILLY, Shahid SHAIKH, Tersem SUMMAN, Deenesh PADHI, Sanjeev BALUJA, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Bok Hoen KIM, Derek R. WITTY
  • Patent number: 8513129
    Abstract: Methods for manufacturing a semiconductor device are provided. In one embodiment, a method includes providing a base material having a first film stack deposited thereon, wherein the base material is formed over the substrate and has a first set of interconnect features. The first film stack comprises a first amorphous carbon layer deposited on a surface of the base material, a first anti-reflective coating layer deposited on the first amorphous carbon layer, and a first photoresist layer deposited on the first anti-reflective coating layer. The first photoresist layer is patterned by shifting laterally a projection of a mask on the first photoresist layer relative to the substrate a desired distance, thereby introducing into the first photoresist layer a first feature pattern to be transferred to the underlying base material, wherein the first feature pattern is not aligned with the first set of interconnect features.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 20, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Martin Jay Seamons, Kwangduk Douglas Lee, Chiu Chan, Patrick Reilly, Sudha Rathi
  • Publication number: 20130161629
    Abstract: Methods are provided for depositing a stack of film layers for use in vertical gates for 3D memory devices, by depositing a sacrificial nitride film layer at a sacrificial film deposition temperature greater than about 550° C.; depositing an oxide film layer over the nitride film layer, at an oxide deposition temperature of about 600° C. or greater; repeating the above steps to deposit a film stack having alternating layers of the sacrificial films and the oxide films; forming a plurality of holes in the film stack; and depositing polysilicon in the plurality of holes in the film stack at a polysilicon process temperature of about 700° C. or greater, wherein the sacrificial film layers and the oxide film layers experience near zero shrinkage during the polysilicon deposition. Flash drive memory devices may also be made by these methods.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: XINHAI HAN, NAGARAJAN RAJAGOPALAN, GUANGCHI XUAN, JIANHUA ZHOU, JIGANG LI, SHAHID SHAIKH, PATRICK REILLY, THOMAS NOWAK, JUAN CARLOS ROCHA-ALVAREZ, HEUNG LAK PARK, BOK HOEN KIM