Patents by Inventor Patrick Roessler

Patrick Roessler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944396
    Abstract: Systems and methods are provided for controlling robotic movement of a tool based on one or more virtual boundaries. The system comprises a tool and a manipulator to support the tool. A control system controls operation of the manipulator and movement of the tool based on a relationship between the tool and the one or more virtual boundaries associated with a target site. The control system includes a boundary handler to determine whether the tool is in compliance with the one or more virtual boundaries or is in violation of the one or more virtual boundaries.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: April 2, 2024
    Assignee: MAKO Surgical Corp.
    Inventors: Michael Dale Dozeman, Patrick Roessler, Gregory Garcia, Rishabh Khurana, Jeremy L. Dunn, David Gene Bowling
  • Patent number: 11937881
    Abstract: Systems and methods are disclosed comprising a robotic device, an instrument attachable to the robotic device to treat tissue, a vision device attached to the robotic device or instrument, and one or more controllers. The vision device generates vision data sets captured from multiple perspectives of the physical object enabled by the vision device moving in a plurality of degrees of freedom during movement of the robotic device. The controller(s) have at least one processor and are in communication with the vision device. The controller(s) associate a virtual object with the physical object based on one or more features of the physical object identifiable in the vision data sets. The virtual object at least partially defines a virtual boundary defining a constraint on movement of the robotic device relative to the physical object. In some cases, movement of the robotic device is actively constrained by using the virtual boundary.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: March 26, 2024
    Assignee: MAKO Surgical Corp.
    Inventor: Patrick Roessler
  • Patent number: 11918305
    Abstract: A surgical system, method, and non-transitory computer readable medium involving a robotic manipulator configured to move a surgical instrument relative to virtual boundaries. A navigation system tracks each of a first object, a second object, and the surgical instrument. The first object is moveable relative to the second object. One or more controllers associate a first virtual boundary with the first object and associate a second virtual boundary with the second object. The first virtual boundary is moveable in relation to the second virtual boundary. The controller(s) control the robotic manipulator in relation to the first virtual boundary to facilitate interaction of the surgical instrument with the first object. The controller(s) control the robotic manipulator in relation to the second virtual boundary to avoid interaction of the surgical instrument with the second object.
    Type: Grant
    Filed: August 19, 2022
    Date of Patent: March 5, 2024
    Assignee: Stryker Corporation
    Inventors: David Gene Bowling, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Jerry A. Culp, John Michael Stuart, Joel N. Beer
  • Publication number: 20240058084
    Abstract: A surgical system and method involve a manipulator including a plurality of links and joints and a tool coupled to the manipulator. A navigation system includes a localizer, a first tracker coupled to the robotic manipulator or the tool, and a second tracker coupled to a workpiece. Controller(s) determine, from the navigation system, a pose of the tool relative to the workpiece. The controller(s) control the robotic manipulator to facilitate removal of a first portion from the workpiece with the tool and sense interaction between the tool and the workpiece during removal of the first portion to detect a density of the workpiece. The controller(s) control the robotic manipulator to facilitate removal of a second portion from the workpiece with the tool, wherein a cutting depth for the second portion is based, at least in part, on the detected density.
    Type: Application
    Filed: November 1, 2023
    Publication date: February 22, 2024
    Applicant: MAKO Surgical Corp.
    Inventors: José Luis Moctezuma de la Barrera, David Gene Bowling, Donald W. Malackowski, Patrick Roessler, Joel N. Beer
  • Patent number: 11864852
    Abstract: A surgical robotic system and method involve a manipulator including a plurality of links and joints and a tool coupled to the manipulator. Controller(s) generate a first tool path to remove a first portion of material from the bone and control the manipulator to position the tool for movement along the first tool path to remove the first portion. The controller(s) sense interaction between the tool and the bone during movement of the tool along the first tool path and generate a second tool path to remove a second portion of material from the bone. Generation of the second tool path is based, at least in part, on the sensed interaction between the tool and the bone during movement along the first tool path. The controller(s) control the manipulator to position the tool for movement along the second tool path to remove the second portion.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: January 9, 2024
    Assignee: MAKO Surgical Corp.
    Inventors: José Luis Moctezuma de la Barrera, David Gene Bowling, Donald W. Malackowski, Patrick Roessler, Joel N. Beer
  • Publication number: 20230329811
    Abstract: A surgical system for manipulating an anatomy includes a surgical tool, a robotic manipulator configured to support and move the surgical tool, and one or more controllers that activate a first virtual boundary delineating a first portion of the anatomy that is allowed to be removed by the surgical tool from a second portion of the anatomy that is protected from removal by the surgical tool. The one or more controllers control the robotic manipulator for enabling the surgical tool to perform fine cutting of the first portion in relation to the first virtual boundary. The one or more controllers control the robotic manipulator for enabling the surgical tool to perform bulk cutting of the second portion of the anatomy.
    Type: Application
    Filed: June 23, 2023
    Publication date: October 19, 2023
    Applicant: MAKO Surgical Corp.
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20230255708
    Abstract: Surgical systems and methods for generating a tool path. A manipulator is configured to support and move a surgical instrument. Controller(s) obtain data that defines a volume of tissue to be removed from a surgical site. The controller(s) operate the manipulator to move the surgical instrument to remove first portions of the volume and acquire data defining the first portions removed from the volume. The controller(s) identify, based on the volume and the acquired data, additional portions of the volume of tissue that require removal. The controller(s) generate a tool path that passes through the additional portions and operate the manipulator to move the surgical instrument along the tool path to remove the additional portions.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Applicant: Stryker Corporation
    Inventors: David G. Bowling, John M. Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Patent number: 11723732
    Abstract: A surgical system for manipulating an anatomy includes a surgical tool, a robotic manipulator configured to support and move the surgical tool, and one or more controllers that activate a first virtual boundary delineating a first portion of the anatomy that is allowed to be removed by the surgical tool from a second portion of the anatomy that is protected from removal by the surgical tool. The one or more controllers control the robotic manipulator for enabling the surgical tool to perform bulk cutting of the first portion in relation to the first virtual boundary. The one or more controllers control the robotic manipulator for enabling the surgical tool to perform fine cutting of the second portion of the anatomy.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: August 15, 2023
    Assignee: MAKO Surgical Corp.
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Patent number: 11672620
    Abstract: A tool path generator utilizes a solid body model of a volume to generate a tool path for a manipulator to remove material of the volume with an energy applicator in a semi-autonomous mode. A material logger monitors movement of the energy applicator according to a cutting path taken by a practitioner in the manual mode, identifies material of the volume to which the energy applicator has been applied in the manual mode, and updates the solid body model based on the identified material. The tool path generator modifies the tool path based on the updated solid body model such that, for the semi-autonomous mode, the modified tool path accounts for the identified material of the volume to which the energy applicator has been applied in the manual mode.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 13, 2023
    Assignee: Stryker Corporation
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20230142179
    Abstract: Robotic surgical systems and methods for controlling movement of a tool relative to a tool path. An input is received from a force/torque sensor in response to user forces/torques manually applied to the tool by a user. A component of force is calculated tangential to the path based on the input. An effective feed rate is calculated to advance the tool along the path based on the tangential component. Virtual constraints are defined on movement of the tool along the path with respect to three degrees of freedom and based on the effective feed rate to promote movement of the tool along the path. Dynamics of the tool are virtually simulated based on the virtual constraints and the input from the force/torque sensor. The manipulator is commanded to advance the tool along the path based on the virtual simulation.
    Type: Application
    Filed: January 5, 2023
    Publication date: May 11, 2023
    Applicant: MAKO Surgical Corp.
    Inventors: Helmut Rohs, Michael Dale Dozeman, Bharat Arora, Michael Ferko, Patrick Roessler, Richard Thomas DeLuca, David Gene Bowling
  • Patent number: 11639001
    Abstract: A robotic system and methods are disclosed. A common axis is defined for an instrument and an energy applicator extending from the instrument. A manipulator has a plurality of links and actuators configured to move the links to position the instrument and energy applicator. A force/torque sensor coupled to the manipulator generates an output in response to forces/torques applied to the instrument. Controller(s) defines a centering point that intersects the common axis. Controller(s) model the instrument and the energy applicator as a virtual rigid body and determine forces/torques to apply to the virtual rigid body, which are determined, in part, based on the output of the force/torque sensor. Controller(s) control the manipulator to advance the energy applicator based on the determined forces/torques applied to the virtual rigid body and reorient the instrument such that the common axis pivots about the centering point during advancement of the energy applicator.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: May 2, 2023
    Assignee: Stryker Corporation
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20230114040
    Abstract: Surgical systems, computer-implemented methods, and software programs for generating a milling path for a bone. The implementations involve obtaining a virtual model of the bone, a resection volume defined relative to the virtual model of the bone, and a reference guide defined with respect to the resection volume. Section planes are successively arranged along the reference guide, and each section plane intersects the reference guide and intersects the resection volume. A section path is generated within each section plane and is defined relative to the resection volume. Transition segments are generated to connect section paths of section planes. The milling path is then generated by combining the section paths and the transition segments.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: MAKO Surgical Corp
    Inventors: Hans-Ulrich Becker, Michael Dale Dozeman, Michael Ferko, Gregory Garcia, Vladimir Gershuni, José Luis Moctezuma de la Barrera, Mark Ellsworth Nadzadi, Patrick Roessler
  • Publication number: 20230105049
    Abstract: Surgical systems, computer-implemented methods, and software programs for producing a patient-specific virtual boundary configured to constrain movement and/or operation of a surgical tool in response to the surgical tool interacting with the patient-specific virtual boundary. The implementations include obtaining a generic virtual boundary including a generic surface with a generic edge, and positioning the generic virtual boundary relative to a virtual anatomical model such that the generic surface intersects the virtual anatomical model. The implementations include computing an intersection of the generic surface and the virtual anatomical model to define a cross-sectional contour of the virtual anatomical model, and morphing the generic edge to the cross-sectional contour to produce a customized surface with a patient-specific edge.
    Type: Application
    Filed: December 2, 2022
    Publication date: April 6, 2023
    Applicant: MAKO Surgical Corp.
    Inventors: Hans-Ulrich Becker, Patrick Roessler, José Luis Moctezuma de la Barrera
  • Patent number: 11564761
    Abstract: A robotic surgical system comprises a surgical tool, a manipulator configured to support the surgical tool, a force/torque sensor to measure forces and torques applied to the surgical tool, and a control system. The control system obtains a three-dimensional milling path for the surgical tool. The control system also receives one or more signals from the force/torque sensor in response to a user manually applying user forces and torques to the surgical tool. The control system determines a commanded pose to which to command the manipulator to advance the surgical tool along the milling path based on a tangential component of the user forces and torques, based on a virtual simulation using virtual constraints, and/or based on other suitable factors to promote guided, manual movement of the surgical tool along the milling path.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: January 31, 2023
    Assignee: MAKO Surgical Corp.
    Inventors: Helmut Rohs, Michael Dale Dozeman, Bharat Arora, Michael Ferko, Patrick Roessler, Richard Thomas DeLuca, David Gene Bowling
  • Patent number: 11564749
    Abstract: Systems, methods, software and techniques for generating a milling path for a tool of a surgical system are provided. The milling path is designed to remove a resection volume associated with an anatomical volume. A reference guide is defined with respect to the resection volume. Sections are defined along the reference guide in succession. Each section intersects the reference guide at a different intersection point and is at a specified orientation relative to the reference guide at the intersection point. Each section further intersects the resection volume. A section path is generated to be bounded within each section and defined relative to the resection volume. A plurality of transition segments are generated and each transition segment connects section paths of successive sections along the reference guide.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: January 31, 2023
    Assignee: MAKO Surgical Corp.
    Inventors: Hans-Ulrich Becker, Michael Dale Dozeman, Michael Ferko, Gregory Garcia, Vladimir Gershuni, Jose Luis Moctezuma de la Barrera, Mark Ellsworth Nadzadi, Patrick Roessler
  • Patent number: 11547482
    Abstract: Systems, methods, software and techniques are disclosed for morphing a generic virtual boundary into a patient-specific virtual boundary for an anatomical model. The generic virtual boundary comprises one or more morphable faces. An intersection of the generic virtual boundary and the anatomical model is computed to define a cross-sectional contour of the anatomical model. One or more faces of the generic virtual boundary are morphed to conform to the cross-sectional contour of the anatomical model to produce the patient-specific virtual boundary. In some cases, the morphed faces are spaced apart from the cross-sectional contour by an offset distance that accounts for a geometric feature of a surgical tool.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: January 10, 2023
    Assignee: MAKO Surgical Corp.
    Inventors: Hans-Ulrich Becker, Patrick Roessler, Jose Luis Moctezuma de la Barrera
  • Publication number: 20220387117
    Abstract: A surgical system, method, and non-transitory computer readable medium involving a robotic manipulator configured to move a surgical instrument relative to virtual boundaries. A navigation system tracks each of a first object, a second object, and the surgical instrument. The first object is moveable relative to the second object. One or more controllers associate a first virtual boundary with the first object and associate a second virtual boundary with the second object. The first virtual boundary is moveable in relation to the second virtual boundary. The controller(s) control the robotic manipulator in relation to the first virtual boundary to facilitate interaction of the surgical instrument with the first object. The controller(s) control the robotic manipulator in relation to the second virtual boundary to avoid interaction of the surgical instrument with the second object.
    Type: Application
    Filed: August 19, 2022
    Publication date: December 8, 2022
    Applicant: Stryker Corporation
    Inventors: David Gene Bowling, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Jerry A. Culp, John Michael Stuart, Joel N. Beer
  • Patent number: 11464579
    Abstract: Systems and methods are disclosed involving an instrument, an instrument tracking device for tracking movement of the instrument, a first boundary tracking device for tracking movement of a first virtual boundary associated with an anatomy of a patient to be treated by the instrument, and a second boundary tracking device for tracking movement of a second virtual boundary associated with a periphery of an opening in the patient to be avoided by the instrument. One or more controllers receive information associated with the tracking devices including positions of the instrument relative to the first and second virtual boundaries, detect movement of the first and second virtual boundaries relative to one another, and generate a response upon detecting movement of the first and second virtual boundaries relative to one another.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: October 11, 2022
    Assignee: Stryker Corporation
    Inventors: David Gene Bowling, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Jerry A. Culp, John Michael Stuart, Joel N. Beer
  • Publication number: 20220233251
    Abstract: Systems and methods are provided for guiding movement of a tool. The system includes a tool and a manipulator. A guide handler obtains a target state for the tool and generates virtual constraints based on the target state and a current state of the tool. A constraint solver calculates a constraint force adapted to attract the tool toward the target state or repel the tool away from the target state based on the virtual constraints. A virtual simulator simulates dynamics of the tool in a virtual simulation based on the constraint force and input from one or more sensors, to output a commanded pose. The control system commands the manipulator to move the tool based on the commanded pose to thereby provide haptic feedback to the user that guides the user toward placing the tool at the target state or away from the target state.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 28, 2022
    Applicant: MAKO Surgical Corp.
    Inventors: David Gene Bowling, Richard Thomas DeLuca, Michael Dale Dozeman, Patrick Roessler, Michael Ferko, Gregory Garcia, Rishabh Khurana
  • Patent number: 11376773
    Abstract: An injection unit for an injection molding machine includes a cylindrical body rotatably supported in a housing interior for rotational coupling with a plasticizing screw. The cylindrical body is fixed to rotate with the plasticizing screw about an injection axis. A gear train in the housing includes a central gear mounted about, and fixed to rotate with, the cylindrical body, the central gear having an uppermost extent vertically above the injection axis and opposed first and second lateral extents on horizontally opposed sides of the injection axis. A rotary drive for powering rotation of the plasticizing screw includes a first motor having a first motor shaft rotatable about a first motor axis, the first motor axis parallel to the injection axis, the first motor axis at a first elevation below the uppermost extent of the central gear, and laterally outboard of the first lateral extent of the central gear.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: July 5, 2022
    Assignee: Niigon Machines Ltd.
    Inventors: Robert D. Schad, Patrick Roessler, Brandon Winkels, Jonathan Alt, Carsten Link