Patents by Inventor Patrick Roessler

Patrick Roessler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190021802
    Abstract: A method of operating a robotic system to efficiently remove material from a workpiece based on a density distribution of the material of the workpiece. The density distribution of the material of the workpiece is determined from a three-dimensional representation and evaluated by classifying the plurality of points or voxels into a first density classification and a second density classification. A navigation computer generates a first tool path and a second tool path for the tool based on the evaluated density distribution. The first tool path is associated with the first density classification, and the second tool path is associated with the second density classification. The position of the tool relative to the workpiece is tracked with a navigation computer and controlled with a manipulator controller based on the generated tool path to remove material along the first tool path, and remove material along the second tool path.
    Type: Application
    Filed: September 24, 2018
    Publication date: January 24, 2019
    Inventors: José Luis Moctezuma de la Barrera, David Gene Bowling, Donald W. Malackowski, Patrick Roessler, Joel N. Beer
  • Publication number: 20190008596
    Abstract: A system includes a robotic manipulator comprising an arm and an end effector coupled to the arm and being moveable by the arm for interacting with a target site in a manual mode and an autonomous mode of operation. A navigation system is configured to track a position of the end effector and the target site. One or more controllers are configured to define a first virtual boundary relative to the target site, prevent the end effector from penetrating the first virtual boundary in the manual mode, and allow the end effector to penetrate the first virtual boundary in the autonomous mode.
    Type: Application
    Filed: September 13, 2018
    Publication date: January 10, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20180370101
    Abstract: An injection molding machine includes a machine base extending lengthwise along a machine axis. The base has a platen support portion extending along a first axial portion of the base, and an injection unit support portion extending along a second axial portion of the base. The machine further includes a platen supported by the platen support portion for carrying a mold half apparatus. The machine further includes a first injection unit supported by the injection unit support portion for discharging a first melt through the platen into a first mold inlet of the mold half apparatus, and a second injection unit supported by the injection unit support portion for discharging a second melt around the platen into a second mold inlet of the mold half apparatus.
    Type: Application
    Filed: August 29, 2018
    Publication date: December 27, 2018
    Applicant: ATHENA AUTOMATION LTD.
    Inventors: Robert D. Schad, Stephen Mracek, Patrick Roessler
  • Patent number: 10117713
    Abstract: Robotic systems and methods for controlling a tool to remove material from a workpiece. Workpieces such as bones are often non-homogenous and have varying density distributions throughout their volumes. In some embodiments, the systems and methods control the feed rate of the tool, the tool path of the tool, and the rotational speed of the tool based on the density distribution in order to provide a desired outcome for a surgical procedure.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: November 6, 2018
    Assignee: MAKO SURGICAL CORP.
    Inventors: José Luis Moctezuma de la Barrera, David Gene Bowling, Donald W. Malackowski, Patrick Roessler, Joel N. Beer
  • Patent number: 10098704
    Abstract: Surgical systems and methods for manipulating an anatomy with a tool include defining a first virtual boundary associated with the anatomy and a second virtual boundary associated with the anatomy. The first virtual boundary is activated in a first mode. Movement of the tool is constrained in relation to the first virtual boundary in the first mode. The first virtual boundary is deactivated in a second mode. Movement of the tool is constrained in relation to the second virtual boundary in the second mode.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: October 16, 2018
    Assignee: MAKO Surgical Corp.
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Patent number: 9937014
    Abstract: A system and a method of controlling a surgical tool of a robotic system during autonomous movement of the surgical tool are provided. A path of movement for the surgical tool is determined. At least one acceptable orientation of the surgical tool with respect to the path is generated. The surgical tool autonomously moves along the path in the at least one acceptable orientation. Forces applied to the surgical tool are sensed. An altered orientation is identified based on the sensed forces. The surgical tool autonomously moves along the path in response to comparing the altered orientation to the at least one acceptable orientation.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: April 10, 2018
    Assignee: MAKO SURGICAL CORP.
    Inventors: David Gene Bowling, Patrick Roessler
  • Patent number: 9921712
    Abstract: A system for providing substantially stable control of a surgical instrument is provided. The system includes a surgical manipulator for manipulating the surgical instrument and at least one computer configured to identify a first subset and a second subset of interaction geometric primitives associated with a virtual tool; determine, based on the first subset, control forces in a first subspace; and determine based on the second subset, control forces in a second subspace having at least one additional dimension. Control forces in the additional dimension are only determined based on the second subset of primitives, which is different than the first subset of primitives. The computer is further configured to determine a torque to constrain an orientation of the surgical instrument, wherein determining the torque comprises defining a virtual tool normal and a control plane normal and using the virtual tool normal and control plane normal to calculate the torque.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: March 20, 2018
    Assignee: MAKO Surgical Corp.
    Inventors: Christopher Alan Lightcap, Hyosig Kang, David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20180071026
    Abstract: System and method for controlling a surgical manipulator to apply an energy applicator to a patient. The surgical manipulator cooperates with a navigation system to position the energy applicator with respect to a boundary so that the energy applicator is constrained from moving outside the boundary. The boundary is generated based on energy applicator parameters measured after manufacture of the energy applicator.
    Type: Application
    Filed: October 12, 2017
    Publication date: March 15, 2018
    Inventors: Donald W. Malackowski, John Michael Stuart, Jerry A. Culp, David Gene Bowling, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20170333137
    Abstract: Navigation systems and methods for tracking physical objects near a target site during a surgical procedure. The navigation system comprises a robotic device and an instrument attached to the robotic device. A vision device is attached to the robotic device or the instrument and generates vision data sets. The vision data sets are captured from multiple perspectives of the physical object. A computing system associates a virtual object with the physical object based on one or more features of the physical object identifiable in the vision data sets. The virtual object at least partially defines a virtual boundary for the instrument.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 23, 2017
    Applicant: MAKO Surgical Corp.
    Inventor: Patrick Roessler
  • Patent number: 9820818
    Abstract: System and method for controlling a surgical manipulator to apply an energy applicator to a patient. The surgical manipulator cooperates with a navigation system to position the energy applicator with respect to a boundary so that the energy applicator is constrained from moving outside the boundary. The boundary is generated based on implant parameters measured after manufacture of the implant.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: November 21, 2017
    Assignee: STRYKER CORPORATION
    Inventors: Donald W. Malackowski, John Michael Stuart, Jerry A. Culp, David Gene Bowling, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20170245955
    Abstract: Robotic system and method for positioning an energy applicator extending from a surgical instrument. The robotic system includes a surgical manipulator operable in a manual mode or a semi-autonomous mode. The surgical manipulator moves the energy applicator along a tool path in the semi-autonomous mode and reorients the surgical instrument.
    Type: Application
    Filed: May 15, 2017
    Publication date: August 31, 2017
    Applicant: Stryker Corporation
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer, John Ketchel
  • Publication number: 20170177191
    Abstract: A system for providing substantially stable control of a surgical instrument is provided. The system includes a surgical manipulator for manipulating the surgical instrument and at least one computer configured to identify a first subset and a second subset of interaction geometric primitives associated with a virtual tool; determine, based on the first subset, control forces in a first subspace; and determine based on the second subset, control forces in a second subspace having at least one additional dimension. Control forces in the additional dimension are only determined based on the second subset of primitives, which is different than the first subset of primitives. The computer is further configured to determine a torque to constrain an orientation of the surgical instrument, wherein determining the torque comprises defining a virtual tool normal and a control plane normal and using the virtual tool normal and control plane normal to calculate the torque.
    Type: Application
    Filed: March 6, 2017
    Publication date: June 22, 2017
    Applicant: MAKO Surgical Corporation
    Inventors: Christopher Alan Lightcap, Hyosig Kang, David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20170172680
    Abstract: A surgical robotic system and method for controlling an instrument feed rate. The surgical robotic system comprises a surgical manipulator for manipulating a surgical instrument and an energy applicator extending from the surgical instrument. At least one controller includes a feed rate calculator configured to calculate the instrument feed rate. A hand held pendant is operable by a user to adjust a defined feed rate of the surgical manipulator in the semi-autonomous mode.
    Type: Application
    Filed: January 9, 2017
    Publication date: June 22, 2017
    Applicant: Stryker Corporation
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Patent number: 9681920
    Abstract: Robotic system and method for positioning an energy applicator extending from a surgical instrument. The robotic system includes a surgical manipulator operable in a manual mode or a semi-autonomous mode. The surgical manipulator moves the energy applicator along a tool path in the semi-autonomous mode, monitors output of a force/torque sensor as the energy applicator moves along the tool path, and reorients the surgical instrument based on the output in response to a user applying reorienting forces and torques to the surgical instrument.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: June 20, 2017
    Assignee: STRYKER CORPORATION
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer, John S. Ketchel
  • Publication number: 20170143432
    Abstract: Systems and methods for establishing and tracking virtual boundaries. The virtual boundaries can delineate zones in which an instrument is not permitted during a surgical procedure. The virtual boundaries can also delineate zones in which the surgical instrument is permitted during the surgical procedure. The virtual boundaries can also identify objects or structures to be treated by the instrument or to be avoided by the instrument during the surgical procedure.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 25, 2017
    Applicant: Stryker Corporation
    Inventors: David Gene Bowling, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Jerry A. Culp, John Michael Stuart, Joel N. Beer
  • Patent number: 9603665
    Abstract: Systems and methods for establishing and tracking virtual boundaries. The virtual boundaries can delineate zones in which an instrument is not permitted during a surgical procedure. The virtual boundaries can also delineate zones in which the surgical instrument is permitted during the surgical procedure. The virtual boundaries can also identify objects or structures to be treated by the instrument or to be avoided by the instrument during the surgical procedure.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: March 28, 2017
    Assignee: STRYKER CORPORATION
    Inventors: David Gene Bowling, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Jerry A. Culp, John Michael Stuart, Joel N. Beer
  • Patent number: 9566125
    Abstract: A surgical manipulator for manipulating a surgical instrument and an energy applicator extending from the surgical instrument. The surgical manipulator further includes at least one controller configured to operate the surgical manipulator in a manual mode or a semi-autonomous mode. The at least one controller including a feed rate calculator configured to calculate an instrument feed rate. The instrument feed rate is a velocity at which a distal end of the energy applicator advances along a path segment of a tool path in the semi-autonomous mode.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: February 14, 2017
    Assignee: STRYKER CORPORATION
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, José Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20170000572
    Abstract: Robotic systems and methods for controlling a tool to remove material from a workpiece. Workpieces such as bones are often non-homogenous and have varying density distributions throughout their volumes. In some embodiments, the systems and methods control the feed rate of the tool, the tool path of the tool, and the rotational speed of the tool based on the density distribution in order to provide a desired outcome for a surgical procedure.
    Type: Application
    Filed: June 28, 2016
    Publication date: January 5, 2017
    Applicant: MAKO Surgical Corp.
    Inventors: José Luis Moctezuma de la Barrera, David Gene Bowling, Donald W. Malackowski, Patrick Roessler, Joel N. Beer
  • Publication number: 20170000577
    Abstract: A manipulator is provided that supports a surgical tool used in a surgical procedure. The manipulator includes a plurality of links and joints and a controller that evaluates an actual joint angle of each joint relative to one or more joint boundary angles for each joint. The controller computes forces and torques to apply to a virtual rigid body based on the evaluation. The controller then determines a commanded joint angle for each joint based on the computed forces and torques so that actuators move the surgical tool to a commanded pose associated with the commanded joint angles.
    Type: Application
    Filed: September 15, 2016
    Publication date: January 5, 2017
    Applicant: Stryker Corporation
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20160338782
    Abstract: Surgical systems and methods for manipulating an anatomy with a tool include defining a first virtual boundary associated with the anatomy and a second virtual boundary associated with the anatomy. The first virtual boundary is activated in a first mode. Movement of the tool is constrained in relation to the first virtual boundary in the first mode. The first virtual boundary is deactivated in a second mode. Movement of the tool is constrained in relation to the second virtual boundary in the second mode.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Applicant: MAKO Surgical Corp.
    Inventors: David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer